125 research outputs found

    Identifying New Therapeutic Targets via Modulation of Protein Corona Formation by Engineered Nanoparticles

    Get PDF
    We introduce a promising methodology to identify new therapeutic targets in cancer. Proteins bind to nanoparticles to form a protein corona. We modulate this corona by using surface-engineered nanoparticles, and identify protein composition to provide insight into disease development.Using a family of structurally homologous nanoparticles we have investigated the changes in the protein corona around surface-functionalized gold nanoparticles (AuNPs) from normal and malignant ovarian cell lysates. Proteomics analysis using mass spectrometry identified hepatoma-derived growth factor (HDGF) that is found exclusively on positively charged AuNPs ((+)AuNPs) after incubation with the lysates. We confirmed expression of HDGF in various ovarian cancer cells and validated binding selectivity to (+)AuNPs by Western blot analysis. Silencing of HDGF by siRNA resulted s inhibition in proliferation of ovarian cancer cells.We investigated the modulation of protein corona around surface-functionalized gold nanoparticles as a promising approach to identify new therapeutic targets. The potential of our method for identifying therapeutic targets was demonstrated through silencing of HDGF by siRNA, which inhibited proliferation of ovarian cancer cells. This integrated proteomics, bioinformatics, and nanotechnology strategy demonstrates that protein corona identification can be used to discover novel therapeutic targets in cancer

    The prevalence, incidence and natural history of primary sclerosing cholangitis in an ethnically diverse population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary sclerosing cholangitis (PSC) is a rare chronic cholestatic liver disease often associated with inflammatory bowel diseases (IBD). Current epidemiological data are limited to studies of predominantly Caucasian populations. Our aim was to define the epidemiology of PSC in a large, ethnically diverse US population.</p> <p>Methods</p> <p>The Northern California Kaiser Permanente (KP) database includes records from over 3 million people and was searched for cases of PSC between January 2000 and October 2006. All identified charts were reviewed for diagnosis confirmation, IBD co-morbidity, and major natural history endpoints.</p> <p>Results</p> <p>We identified 169 (101 males) cases fulfilling PSC diagnostic criteria with a mean age at diagnosis of 44 years (range 11-81). The age-adjusted point prevalence was 4.15 per 100,000 on December 31, 2005. The age-adjusted incidence per 100,000 person-years was not significantly greater in men 0.45 (95% CI 0.33 - 0.61) than women 0.37 (95% CI 0.26 - 0.51). IBD was present in 109/169 (64.5%) cases and was significantly more frequent in men than women with PSC (73.3% and 51.5%, respectively, p = 0.005). The cumulative average yearly mortality rate was 1.9%. Age and serum sodium, creatinine and bilirubin at diagnosis and albumin at last entry were identified as significant factors associated with death, liver transplant or cholangiocarcinoma.</p> <p>Conclusions</p> <p>The incidence and prevalence of PSC observed in a representative Northern California population are lower compared to previous studies in Caucasian populations and this might reflect differences in the incidence of PSC among various ethnic groups.</p

    An Efficient Vector System to Modify Cells Genetically

    Get PDF
    The transfer of foreign genes into mammalian cells has been essential for understanding the functions of genes and mechanisms of genetic diseases, for the production of coding proteins and for gene therapy applications. Currently, the identification and selection of cells that have received transferred genetic material can be accomplished by methods, including drug selection, reporter enzyme detection and GFP imaging. These methods may confer antibiotic resistance, or be disruptive, or require special equipment. In this study, we labeled genetically modified cells with a cell surface biotinylation tag by co-transfecting cells with BirA, a biotin ligase. The modified cells can be quickly isolated for downstream applications using a simple streptavidin bead method. This system can also be used to screen cells expressing two sets of genes from separate vectors

    A prospective investigation of rumination and executive control in predicting overgeneral autobiographical memory in adolescence

    Get PDF
    The CaR-FA-X model (Williams et al., 2007), or capture and rumination (CaR), functional avoidance (FA) and impaired executive control (X), is a model of overgeneral autobiographical memory. Two mechanisms of the model, rumination and executive control were examined in isolation and in interaction to investigate overgeneral autobiographical memory over time. Method: Across two time points, six months apart, a total of 149 adolescents (13-16 years) completed a minimal instruction autobiographical memory test, a measure of executive control with emotional and non-emotional stimuli, and measures of brooding rumination and reflective pondering. Results: It was found that executive control for emotional information was negatively associated with OGM, but only when reflective pondering levels were high. Conclusion: In the context of higher levels of reflective pondering, greater switch costs (i.e. lower executive control) when processing emotional information predict a decrease in OGM over time

    Overview of diagnosis and management of paediatric headache. Part I: diagnosis

    Get PDF
    Headache is the most common somatic complaint in children and adolescents. The evaluation should include detailed history of children and adolescents completed by detailed general and neurological examinations. Moreover, the possible role of psychological factors, life events and excessively stressful lifestyle in influencing recurrent headache need to be checked. The choice of laboratory tests rests on the differential diagnosis suggested by the history, the character and temporal pattern of the headache, and the physical and neurological examinations. Subjects who have any signs or symptoms of focal/progressive neurological disturbances should be investigated by neuroimaging techniques. The electroencephalogram and other neurophysiological examinations are of limited value in the routine evaluation of headaches. In a primary headache disorder, headache itself is the illness and headache is not attributed to any other disorder (e.g. migraine, tension-type headache, cluster headache and other trigeminal autonomic cephalgias). In secondary headache disorders, headache is the symptom of identifiable structural, metabolic or other abnormality. Red flags include the first or worst headache ever in the life, recent headache onset, increasing severity or frequency, occipital location, awakening from sleep because of headache, headache occurring exclusively in the morning associated with severe vomiting and headache associated with straining. Thus, the differential diagnosis between primary and secondary headaches rests mainly on clinical criteria. A thorough evaluation of headache in children and adolescents is necessary to make the correct diagnosis and initiate treatment, bearing in mind that children with headache are more likely to experience psychosocial adversity and to grow up with an excess of both headache and other physical and psychiatric symptoms and this creates an important healthcare problem for their future life

    Early predictors of impaired social functioning in male rhesus macaques (Macaca mulatta)

    Get PDF
    Autism spectrum disorder (ASD) is characterized by social cognition impairments but its basic disease mechanisms remain poorly understood. Progress has been impeded by the absence of animal models that manifest behavioral phenotypes relevant to ASD. Rhesus monkeys are an ideal model organism to address this barrier to progress. Like humans, rhesus monkeys are highly social, possess complex social cognition abilities, and exhibit pronounced individual differences in social functioning. Moreover, we have previously shown that Low-Social (LS) vs. High-Social (HS) adult male monkeys exhibit lower social motivation and poorer social skills. It is not known, however, when these social deficits first emerge. The goals of this study were to test whether juvenile LS and HS monkeys differed as infants in their ability to process social information, and whether infant social abilities predicted later social classification (i.e., LS vs. HS), in order to facilitate earlier identification of monkeys at risk for poor social outcomes. Social classification was determined for N = 25 LS and N = 25 HS male monkeys that were 1–4 years of age. As part of a colony-wide assessment, these monkeys had previously undergone, as infants, tests of face recognition memory and the ability to respond appropriately to conspecific social signals. Monkeys later identified as LS vs. HS showed impairments in recognizing familiar vs. novel faces and in the species-typical adaptive ability to gaze avert to scenes of conspecific aggression. Additionally, multivariate logistic regression using infant social ability measures perfectly predicted later social classification of all N = 50 monkeys. These findings suggest that an early capacity to process important social information may account for differences in rhesus monkeys’ motivation and competence to establish and maintain social relationships later in life. Further development of this model will facilitate identification of novel biological targets for intervention to improve social outcomes in at-risk young monkeys

    Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury

    Get PDF
    [EN] Background: This study determines the feasibility of different approaches to integrative videogame-based group therapy for improving self-awareness, social skills, and behaviors among traumatic brain injury (TBI) victims and retrieves participant feedback. Methods: Forty-two adult TBI survivors were included in a longitudinal study with a pre- and post-assessments. The experimental intervention involved weekly one-hour sessions conducted over six months. Participants were assessed using the Self-Awareness Deficits Interview (SADI), Patient Competency Rating Scale (PCRS), the Social Skills Scale (SSS), the Frontal Systems Behavior Scale (FrSBe), the System Usability Scale (SUS). Pearson's chi-squared test (χ 2 ) was applied to determine the percentage of participants who had changed their clinical classification in these tests. Feedback of the intervention was collected through the Intrinsic Motivation Inventory (IMI). Results: SADI results showed an improvement in participant perceptions of deficits (χ 2 = 5.25, p < 0.05), of their implications (χ 2 = 4.71, p < 0.05), and of long-term planning (χ 2 = 7.86, p < 0.01). PCRS results confirm these findings (χ 2 = 5.79, p < 0.05). SSS results were also positive with respect to social skills outcomes (χ 2 = 17.52, p < 0.01), and FrSBe results showed behavioral improvements (χ 2 = 34.12, p < 0.01). Participants deemed the system accessible (80.43 ± 8.01 out of 100) and regarded the intervention as interesting and useful (5.74 ± 0.69 out of 7). Conclusions: Integrative videogame-based group therapy can improve self-awareness, social skills, and behaviors among individuals with chronic TBI, and the approach is considered effective and motivating.This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project TEREHA, IDI-20110844; and NeuroVR, TIN2013-44741-R), by Ministerio de Educacion y Ciencia of Spain (Projects Consolider-C, SEJ2006-14301/PSIC; and "CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII"), and by the Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educacion, 2008-157).Llorens Rodríguez, R.; Noé Sebastián, E.; Ferri, J.; Alcañiz Raya, ML. (2015). Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury. Journal of NeuroEngineering and Rehabilitation. 12(37):1-9. https://doi.org/10.1186/s12984-015-0029-1S191237Sherer M, Bergloff P, Levin E, High Jr WM, Oden KE, Nick TG. Impaired awareness and employment outcome after traumatic brain injury. J Head Trauma Rehabil. 1998;13(5):52–61.Sherer M, Hart T, Nick TG. Measurement of impaired self-awareness after traumatic brain injury: a comparison of the patient competency rating scale and the awareness questionnaire. Brain Inj. 2003;17(1):25–37.Simmond M, Fleming J. Occupational therapy assessment of self-awareness following traumatic brain injury: a literature review. Br J Occup Ther. 2003;66:447–53.Bogod NM, Mateer CA, MacDonald SWS. Self-awareness after traumatic brain injury: a comparison of measures and their relationship to executive functions. J Int Neuropsychol Soc. 2003;9(03):450–8.Stuss DT, Levine B. Adult clinical neuropsychology: lessons from studies of the frontal lobes. Annu Rev Psychol. 2002;53:401–33.Ham TE, Bonnelle V, Hellyer P, Jilka S, Robertson IH, Leech R, et al. The neural basis of impaired self-awareness after traumatic brain injury. Brain. 2014;137(Pt 2):586–97.Prigatano GP, Schacter DL. Awareness of Deficit After Brain Injury: Clinical and Theoretical Issues. New York: Oxford University Press; 1991.Katz N, Fleming J, Keren N, Lightbody S, Hartman-Maeir A. Unawareness and/or denial of disability: implications for occupational therapy intervention. Can J Occup Ther. 2002;69(5):281–92.Fleming JM, Strong J, Ashton R. Self-awareness of deficits in adults with traumatic brain injury: how best to measure? Brain Inj. 1996;10(1):1–15.Goverover Y, Johnston MV, Toglia J, Deluca J. Treatment to improve self-awareness in persons with acquired brain injury. Brain Inj. 2007;21(9):913–23.Bach LJ, David AS. Self-awareness after acquired and traumatic brain injury. Neuropsychol Rehabil. 2006;16(4):397–414.Prigatano GP. Behavioral Limitations TBI patients tend to underestimate: a replication and extension to patients with lateralized cerebral dysfunction. Clin Neuropsychol. 1996;10(2):191–201.Sherer M, Boake C, Levin E, Silver BV, Ringholz G, High WM. Characteristics of impaired awareness after traumatic brain injury. J Int Neuropsychol Soc. 1998;4(04):380–7.Sveen U, Mongs M, Roe C, Sandvik L, Bautz-Holter E. Self-rated competency in activities predicts functioning and participation one year after traumatic brain injury. Clin Rehabil. 2008;22(1):45–55.Crosson B, Barco PP, Velozo CA, Bolesta MM, Cooper PV, Werts D, et al. Awareness and compensation in postacute head injury rehabilitation. J Head Trauma Rehabil. 1989;4(3):46–54.Toglia J, Kirk U. Understanding awareness deficits following brain injury. NeuroRehabilitation. 2000;15(1):57–70.Schrijnemaekers AC, Smeets SM, Ponds RW, van Heugten CM, Rasquin S. Treatment of unawareness of deficits in patients with acquired brain injury: a systematic review. J Head Trauma Rehabil. 2014;29(5):E9–30.Tate R, Kennedy M, Ponsford J, Douglas J, Velikonja D, Bayley M, et al. INCOG recommendations for management of cognition following traumatic brain injury, part III: executive function and self-awareness. J Head Trauma Rehabil. 2014;29(4):338–52.Chittum WR, Johnson K, Chittum JM, Guercio JM, McMorrow MJ. Road to awareness: an individualized training package for increasing knowledge and comprehension of personal deficits in persons with acquired brain injury. Brain Inj. 1996;10(10):763–76.Zhou J, Chittum R, Johnson K, Poppen R, Guercio J, McMorrow MJ. The utilization of a game format to increase knowledge of residuals among people with acquired brain injury. J Head Trauma Rehabil. 1996;11(1):51–61.Ownsworth TL, McFarland K, Mc Young R. Self-awareness and psychosocial functioning following acquired brain injury: an evaluation of a group support programme. Neuropsychol Rehabil. 2000;10(5):465–84.Lundqvist A, Linnros H, Orlenius H, Samuelsson K. Improved self-awareness and coping strategies for patients with acquired brain injury–a group therapy programme. Brain Inj. 2010;24(6):823–32.Schmidt J, Lannin N, Fleming J, Ownsworth T. Feedback interventions for impaired self-awareness following brain injury: a systematic review. J Rehabil Med. 2011;43(8):673–80.Schmidt J, Fleming J, Ownsworth T, Lannin NA. Video feedback on functional task performance improves self-awareness after traumatic brain injury: a randomized controlled trial. Neurorehabil Neural Repair. 2013;27(4):316–24.McGraw-Hunter M, Faw GD, Davis PK. The use of video self-modelling and feedback to teach cooking skills to individuals with traumatic brain injury: a pilot study. Brain Inj. 2006;20(10):1061–8.Ownsworth T, Quinn H, Fleming J, Kendall M, Shum D. Error self-regulation following traumatic brain injury: a single case study evaluation of metacognitive skills training and behavioural practice interventions. Neuropsychol Rehabil. 2010;20(1):59–80.Lucas SE, Fleming JM. Interventions for improving self-awareness following acquired brain injury. Aust Occup Ther J. 2005;52(2):160–70.Malec JF, Brown AW, Leibson CL, Flaada JT, Mandrekar JN, Diehl NN, et al. The mayo classification system for traumatic brain injury severity. J Neurotrauma. 2007;24(9):1417–24.Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.Nakase-Thompson R, Manning E, Sherer M, Yablon SA, Gontkovsky SL, Vickery C. Brief assessment of severe language impairments: initial validation of the Mississippi aphasia screening test. Brain Inj. 2005;19(9):685–91.Prigatano GP, Fordyce DJ. Neuropsychological rehabilitation after brain injury. Baltimore: The Johns Hopkins University Press; 1986.Gismero E. EHS, Escala de habilidades sociales. TEA: Madrid; 2000.Reid-Arndt SA, Nehl C, Hinkebein J. The Frontal Systems Behaviour Scale (FrSBe) as a predictor of community integration following a traumatic brain injury. Brain Inj. 2007;21(13–14):1361–9.Brooke J. SUS: A quick and dirty usability scale. In Usability evaluation in industry. PW Jordan, et al. Editors. Taylor and Francis; 1996Plant RW, Ryan RM. Intrinsic motivation and the effects of self-consciousness, self-awareness, and ego-involvement: An investigation of internally controlling styles. J Pers. 1985;53(3):435–49.Cheng SK, Man DW. Management of impaired self-awareness in persons with traumatic brain injury. Brain Inj. 2006;20(6):621–8.Ownsworth T, Fleming J, Shum D, Kuipers P, Strong J. Comparison of individual, group and combined intervention formats in a randomized controlled trial for facilitating goal attainment and improving psychosocial function following acquired brain injury. J Rehabil Med. 2008;40(2):81–8.Ownsworth T, Fleming J, Desbois J, Strong J, Kuipers P. A metacognitive contextual intervention to enhance error awareness and functional outcome following traumatic brain injury: a single-case experimental design. J Int Neuropsychol Soc. 2006;12(1):54–63.Fleming JM, Lucas SE, Lightbody S. Using occupation to facilitate self-awareness in people who have acquired brain injury: a pilot study. Can J Occup Ther. 2006;73(1):44–55.McDonald S, Tate R, Togher L, Bornhofen C, Long E, Gertler P, et al. Social skills treatment for people with severe, chronic acquired brain injuries: a multicenter trial. Arch Phys Med Rehabil. 2008;89(9):1648–59.Schefft BK, Malec JF, Lehr BK, Kanfer FH. The role of self-regulation therapy with the brain-injured client. In: Maurish ME, Moses JA, editors. Clinical neuropsychology: theoretical foundations for practitioners. Mahwah, NJ: Erlbaum; 1997. p. 237–82.Pollens RD, McBratnie BP, Burton PL. Beyond cognition: executive functions in closed head injury. Cogn Rehabil. 1988;6(5):26–32.Carbery H, Burd B. Social aspects of cognitive retraining in an outpatient group setting for head trauma patients. Cogn Rehabil. 1983;1:5–7.Bennett TL, Raymond MJ. Emotional consequences and psychotherapy for individuals with mild brain injury. Appl Neuropsychol. 1997;4(1):55–61.Delmonico RL, Hanley-Peterson P, Englander J. Group psychotherapy for persons with traumatic brain injury: management of frustration and substance abuse. J Head Trauma Rehabil. 1998;13(6):10–22.Alexy WD, Foster M, Baker A. Audio-visual feedback: an exercise in self-awareness for the head injured patient. Cogn Rehabil. 1983;1(6):8–10.Ranseen JD, Bohaska LA, Schmitt FA. An investigation of anosognosia following traumatic head injury. Int J Clin Neuropsychol. 1990;12(1):29–36.Sasse N, Gibbons H, Wilson L, Martinez-Olivera R, Schmidt H, Hasselhorn M, et al. Self-awareness and health-related quality of life after traumatic brain injury. J Head Trauma Rehabil. 2013;28(6):464–72.Malec JF, Testa JA, Rush BK, Brown AW, Moessner AM. Self-assessment of impairment, impaired self-awareness, and depression after traumatic brain injury. J Head Trauma Rehabil. 2007;22(3):156–66.Fleming JM, Ownsworth T. A review of awareness interventions in brain injury rehabilitation. Neuropsychol Rehabil. 2006;16(4):474–500

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    AbstractOptimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.</jats:p
    corecore