1,320 research outputs found

    The dynamical response to the node defect in thermally activated remagnetization of magnetic dot array

    Full text link
    The influence of nonmagnetic central node defect on dynamical properties of regular square-shaped 5 x 5 segment of magnetic dot array under the thermal activation is investigated via computer simulations. Using stochastic Landau-Lifshitz-Gilbert equation we simulate hysteresis and relaxation processes. The remarkable quantitative and qualitative differences between magnetic dot arrays with nonmagnetic central node defect and magnetic dot arrays without defects have been found.Comment: 4 pages,5 figures, submitted to J. Magn. Magn. Matte

    Knowledge of sequence structure prevents auditory distraction: An ERP study

    Get PDF
    Infrequent, salient stimuli often capture attention despite their task-irrelevancy, and disrupt on-going goal-directed behavior. A number of studies show that presenting cues signaling forthcoming deviants reduces distraction, which may be a “by-product” of cue-processing interference or the result of direct preparatory processes for the forthcoming distracter. In the present study, instead of “bursts” of cue information, information on the temporal structure of the stimulus sequence was provided. Young adults performed a spatial discrimination task where complex tones moving left or right were presented. In the predictable condition, every 7th tone was a pitch-deviant, while in the random condition the position of deviants was random with a probability of 1/7. Whereas the early event-related potential correlates of deviance-processing (N1, and MMN) were unaffected by predictability, P3a amplitude was significantly reduced in the predictable condition, indicating that prevention of distraction was based on the knowledge about the temporal structure of the stimulus sequence

    Simulation of reaction-diffusion processes in three dimensions using CUDA

    Get PDF
    Numerical solution of reaction-diffusion equations in three dimensions is one of the most challenging applied mathematical problems. Since these simulations are very time consuming, any ideas and strategies aiming at the reduction of CPU time are important topics of research. A general and robust idea is the parallelization of source codes/programs. Recently, the technological development of graphics hardware created a possibility to use desktop video cards to solve numerically intensive problems. We present a powerful parallel computing framework to solve reaction-diffusion equations numerically using the Graphics Processing Units (GPUs) with CUDA. Four different reaction-diffusion problems, (i) diffusion of chemically inert compound, (ii) Turing pattern formation, (iii) phase separation in the wake of a moving diffusion front and (iv) air pollution dispersion were solved, and additionally both the Shared method and the Moving Tiles method were tested. Our results show that parallel implementation achieves typical acceleration values in the order of 5-40 times compared to CPU using a single-threaded implementation on a 2.8 GHz desktop computer.Comment: 8 figures, 5 table

    Population and age structure in Hungary: a residential preference and age dependency approach to disaggregate census data

    Get PDF
    We present a simple model to disaggregate age structured population census data to a 1-km grid for Hungary. A dasymetric approach was used to predict the spatial distribution of population in different age groups by distinguishing residential preferences (in relation to accessible social, economic and green amenities) for working age groups (15–29, 30–49 and 50–64) and population dependencies for children and the elderly (aged 0–14 and 65+). By using open-access land cover data and fine-level population census data as inputs, the model predicts the likely spatial distribution of population and age structure for Hungary in 2011. The resulting map and gridded data provide information to support spatial planning of residential development and urban infrastructure. The model is less data-demanding than most existing approaches, but provides greater power for describing population patterns. It can also be used to create scenarios of future demographic change

    Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary

    Get PDF
    Impacts of socio-economic, political and climatic change on agricultural land systems are inherently uncertain. The role of regional and local-level actors is critical in developing effective policy responses that accommodate such uncertainty in a flexible and informed way across governance levels. This study identified potential regional challenges in arable land use systems, which may arise from climate and socio-economic change for two counties in western Hungary: Veszprém and Tolna. An empirically-grounded, agent-based model was developed from an extensive farmer household survey about local land use practices. The model was used to project future patterns of arable land use under four localised, stakeholder-driven scenarios of plausible future socio-economic and climate change. The results show strong differences in farmers' behaviour and current agricultural land use patterns between the two regions, highlighting the need to implement focused policy at the regional level. For instance, policy that encourages local food security may need to support improvements in the capacity of farmers to adapt to physical constraints in Veszprém and farmer access to social capital and environmental awareness in Tolna. It is further suggested that the two regions will experience different challenges to adaptation under possible future conditions (up to 2100). For example, Veszprém was projected to have increased fallow land under a scenario with high inequality, ineffective institutions and higher-end climate change, implying risks of land abandonment. By contrast, Tolna was projected to have a considerable decline in major cereals under a scenario assuming a de-globalising future with moderate climate change, inferring challenges to local food self-sufficiency. The study provides insight into how socio-economic and physical factors influence the selection of crop rotation plans by farmers in western Hungary and how farmer behaviour may affect future risks to agricultural land systems under environmental change

    A redshift - observation-time relation for gamma-ray bursts: evidence of a distinct sub-luminous population

    Full text link
    We show how the redshift and peak-flux distributions of gamma-ray bursts (GRBs) have an observation time dependence that can be used to discriminate between different burst populations. We demonstrate how observation time relations can be derived from the standard integral distributions and that they can differentiate between GRB populations detected by both the BATSE and \emph{Swift} satellites. Using \emph{Swift} data we show that a redshift--observation-time relation (log\,ZZ\,--\,log\,TT) is consistent with both a peak-flux\,--\,observation time relation (log\,PP\,--\,log\,TT) and a standard log\,NN\,--\,log\,PP brightness distribution. As the method depends only on rarer small-zz events, it is invariant to high-zz selection effects. We use the log\,ZZ\,--\,log\,TT relation to show that sub-luminous GRBs are a distinct population occurring at a higher rate of order 15090+180Gpc3yr1150^{+180}_{-90} \mathrm{Gpc}^{-3}\mathrm{yr}^{-1}. Our analysis suggests that GRB 060505 -- a relatively nearby GRB observed without any associated supernova -- is consistent with a sub-luminous population of bursts. Finally, we suggest that our relations can be used as a consistency test for some of the proposed GRB spectral energy correlations.Comment: Accepted by MNRA

    Electron spin resonance in membrane research: protein–lipid interactions from challenging beginnings to state of the art

    Get PDF
    Conventional electron paramagnetic resonance (EPR) spectra of lipids that are spin-labelled close to the terminal methyl end of the acyl chains are able to resolve the lipids directly contacting the protein from those in the fluid bilayer regions of the membrane. This allows determination of both the stoichiometry of lipid–protein interaction (i.e., number of lipid sites at the protein perimeter) and the selectivity of the protein for different lipid species (i.e., association constants relative to the background lipid). Spin-label EPR data are summarised for 20 or more different transmembrane peptides and proteins, and 7 distinct species of lipids. Lineshape simulations of the two-component conventional spin-label EPR spectra allow estimation of the rate at which protein-associated lipids exchange with those in the bulk fluid regions of the membrane. For lipids that do not display a selectivity for the protein, the intrinsic off-rates for exchange are in the region of 10 MHz: less than 10× slower than the rates of diffusive exchange in fluid lipid membranes. Lipids with an affinity for the protein, relative to the background lipid, have off-rates for leaving the protein that are correspondingly slower. Non-linear EPR, which depends on saturation of the spectrum at high radiation intensities, is optimally sensitive to dynamics on the timescale of spin-lattice relaxation, i.e., the microsecond regime. Both progressive saturation and saturation transfer EPR experiments provide definitive evidence that lipids at the protein interface are exchanging on this timescale. The sensitivity of non-linear EPR to low frequencies of spin exchange also allows the location of spin-labelled membrane protein residues relative to those of spin-labelled lipids, in double-labelling experiments

    Sensory ERP effects in auditory distraction: did we miss the main event?

    Get PDF
    Event-related potentials (ERPs) offer unique insights into processes related to involuntary attention changes triggered by rare, unpredictably occurring sensory events, that is, distraction. Contrasting ERPs elicited by distracters and frequent standard stimuli in oddball paradigms allowed the formulation of a three-stage model describing distraction-related processing: first, the distracting event is highlighted by a sensory filter. Second, attention is oriented towards the event, and finally, the task-optimal attention set is restored, or task priorities are changed. Although this model summarizes how distracting stimulus information is processed, not much is known about the cost of taking this exceptional route of processing. The present study demonstrates the impact of distraction on sensory processing. Participants performed a Go/NoGo tone-duration discrimination task, with infrequent pitch distracters. In the two parts of the experiment the duration-response mapping was reversed. Contrasts of distracter and standard ERPs revealed higher P3a- and reorienting negativity amplitudes for short than for long tones, independently from response type. To understand the cause of these asymmetries, short vs. long ERP contrasts were calculated. The ERP pattern showed that short standards elicited an attention-dependent offset response, which was abolished for short distracters. That is, the apparent P3a- and RON enhancements were caused by the removal of a task-related attentional sensory enhancement. This shows that the disruption of task-optimal attention set precedes the elicitation of the P3a, which suggests that P3a does not reflect a process driving the initial distraction-related attention change

    Roper Resonance and S_{11}(1535) from Lattice QCD

    Full text link
    Using the constrained curve fitting method and overlap fermions with the lowest pion mass at 180MeV180 {\rm MeV}, we observe that the masses of the first positive and negative parity excited states of the nucleon tend to cross over as the quark masses are taken to the chiral limit. Both results at the physical pion mass agree with the experimental values of the Roper resonance (N1/2+(1440)N^{1/2+}(1440)) and S11S_{11} (N1/2(1535)N^{1/2-}(1535)). This is seen for the first time in a lattice QCD calculation. These results are obtained on a quenched Iwasaki 163×2816^3 \times 28 lattice with a=0.2fma = 0.2 {\rm fm}. We also extract the ghost ηN\eta' N states (a quenched artifact) which are shown to decouple from the nucleon interpolation field above mπ300MeVm_{\pi} \sim 300 {\rm MeV}. From the quark mass dependence of these states in the chiral region, we conclude that spontaneously broken chiral symmetry dictates the dynamics of light quarks in the nucleon.Comment: 10 pages, 5 figures, revised version to appear in PL
    corecore