5 research outputs found
Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures
[EN] We present a framework to solve non-linear eigenvalue problems suitable for a Finite Element discretization. The implementation is based on the open-source finite element software GetDP and the open-source library SLEPc. As template examples, we propose and compare in detail different ways to address the numerical computation of the electromagnetic modes of frequency-dispersive objects. This is a non-linear eigenvalue problem involving a non-Hermitian operator. A classical finite element formulation is derived for five different solutions and solved using algorithms adapted to the large size of the resulting discrete problem. The proposed solutions are applied to the computation of the dispersion relation of a diffraction grating made of a Drude material. The important numerical consequences linked to the presence of sharp corners and sign-changing coefficients are carefully examined. For each method, the convergence of the eigenvalues with respect to the mesh refinement and the shape function order, as well as computation time and memory requirements are investigated. The open-source template model used to obtain the numerical results is provided. Details of the implementation of polynomial and rational eigenvalue problems in GetDP are given in the appendix.
Program summary
Program title: NonLinearEVP.pro
CPC Library link to program files: http://dx.doi.org/10.17632/r57nxxtc62.1
Licensing provisions: GNU General Public License 3
Programming language: Gmsh (http://gmsh.info), GetDP (http://getdp.info)
Nature of problem: Computing the eigenvalues and eigenvectors of electromagnetic wave problems involving frequency-dispersive materials. The resulting eigenvalue problem is non-linear and non-hermitian.
Solution method: Finite element method coupled to efficient non-linear eigenvalue solvers: Relevant SLEPc solvers were interfaced to the Finite Element software GetDP. Several linearization schemes are benchmarked. (C) 2020 Elsevier B.V. All rights reserved.The work was partly supported by the French National Agency for Research (ANR) under the project "Resonance" (ANR-16-CE240013). The authors acknowledge the members of the project "Resonance'' for fruitful discussions. C. Campos and J. E. Roman were supported by the Spanish Agencia Estatal de Investigacion (AEI) under project SLEPc-HS (TIN2016-75985-P), which includes European Commission ERDF funds. C. Geuzaine was supported by ARC grant for Concerted Research Actions (ARC WAVES 15/19-03), financed by the Wallonia-Brussels Federation of Belgium. The authors thank Christian Engström from Ume¿ Universitet for helpful comments. Maxence Cassier from Institut Fresnel is acknowledged. Finally, the authors address special thanks to Anne-Sophie Bonnet Ben-Dhia and Camille Carvalho from INRIA (POEMS) for their motivating remarks and insights.Demesy, G.; Nicolet, A.; Gralak, B.; Geuzaine, C.; Campos, C.; Roman, JE. (2020). Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures. Computer Physics Communications. 257:1-15. https://doi.org/10.1016/j.cpc.2020.107509S115257Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., & Tisseur, F. (2013). NLEVP. ACM Transactions on Mathematical Software, 39(2), 1-28. doi:10.1145/2427023.2427024Silveirinha, M. G. (2007). Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters. Physical Review B, 75(11). doi:10.1103/physrevb.75.115104Alù, A. (2011). First-principles homogenization theory for periodic metamaterials. Physical Review B, 84(7). doi:10.1103/physrevb.84.075153Etchegoin, P. G., Le Ru, E. C., & Meyer, M. (2006). An analytic model for the optical properties of gold. The Journal of Chemical Physics, 125(16), 164705. doi:10.1063/1.2360270Garcia-Vergara, M., Demésy, G., & Zolla, F. (2017). Extracting an accurate model for permittivity from experimental data: hunting complex poles from the real line. Optics Letters, 42(6), 1145. doi:10.1364/ol.42.001145Sauvan, C., Hugonin, J. P., Maksymov, I. S., & Lalanne, P. (2013). Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators. Physical Review Letters, 110(23). doi:10.1103/physrevlett.110.237401Vial, B., Commandré, M., Demésy, G., Nicolet, A., Zolla, F., Bedu, F., … Roux, L. (2014). Transmission enhancement through square coaxial aperture arrays in metallic film: when leaky modes filter infrared light for multispectral imaging. Optics Letters, 39(16), 4723. doi:10.1364/ol.39.004723Yan, W., Faggiani, R., & Lalanne, P. (2018). Rigorous modal analysis of plasmonic nanoresonators. Physical Review B, 97(20). doi:10.1103/physrevb.97.205422Lalanne, P., Yan, W., Vynck, K., Sauvan, C., & Hugonin, J.-P. (2018). Light Interaction with Photonic and Plasmonic Resonances. Laser & Photonics Reviews, 12(5), 1700113. doi:10.1002/lpor.201700113Van der Lem, H., Tip, A., & Moroz, A. (2003). Band structure of absorptive two-dimensional photonic crystals. Journal of the Optical Society of America B, 20(6), 1334. doi:10.1364/josab.20.001334Bai, Q., Perrin, M., Sauvan, C., Hugonin, J.-P., & Lalanne, P. (2013). Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Optics Express, 21(22), 27371. doi:10.1364/oe.21.027371Weiss, T., Mesch, M., Schäferling, M., Giessen, H., Langbein, W., & Muljarov, E. A. (2016). From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing. Physical Review Letters, 116(23). doi:10.1103/physrevlett.116.237401Zimmerling, J., Wei, L., Urbach, P., & Remis, R. (2016). A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media. Journal of Computational Physics, 315, 348-362. doi:10.1016/j.jcp.2016.03.057Zimmerling, J., Wei, L., Urbach, P., & Remis, R. (2016). Efficient computation of the spontaneous decay rate of arbitrarily shaped 3D nanosized resonators: a Krylov model-order reduction approach. Applied Physics A, 122(3). doi:10.1007/s00339-016-9643-4Powell, D. A. (2014). Resonant dynamics of arbitrarily shaped meta-atoms. Physical Review B, 90(7). doi:10.1103/physrevb.90.075108Tisseur, F., & Meerbergen, K. (2001). The Quadratic Eigenvalue Problem. SIAM Review, 43(2), 235-286. doi:10.1137/s0036144500381988Güttel, S., & Tisseur, F. (2017). The nonlinear eigenvalue problem. Acta Numerica, 26, 1-94. doi:10.1017/s0962492917000034Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019Dular, P., Geuzaine, C., Henrotte, F., & Legros, W. (1998). A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Transactions on Magnetics, 34(5), 3395-3398. doi:10.1109/20.717799G. Demésy, 2018. URL: https://gitlab.onelab.info/doc/models/tree/master/NonLinearEVP.Brûlé, Y., Gralak, B., & Demésy, G. (2016). Calculation and analysis of the complex band structure of dispersive and dissipative two-dimensional photonic crystals. Journal of the Optical Society of America B, 33(4), 691. doi:10.1364/josab.33.000691Teixeira, F. L., & Chew, W. C. (1997). Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates. IEEE Microwave and Guided Wave Letters, 7(11), 371-373. doi:10.1109/75.641424Vial, B., Zolla, F., Nicolet, A., & Commandré, M. (2014). Quasimodal expansion of electromagnetic fields in open two-dimensional structures. Physical Review A, 89(2). doi:10.1103/physreva.89.023829Bermúdez, A., Hervella-Nieto, L., Prieto, A., & Rodrı´guez, R. (2007). An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. Journal of Computational Physics, 223(2), 469-488. doi:10.1016/j.jcp.2006.09.018Modave, A., Delhez, E., & Geuzaine, C. (2014). Optimizing perfectly matched layers in discrete contexts. International Journal for Numerical Methods in Engineering, 99(6), 410-437. doi:10.1002/nme.4690Tip, A. (1998). Linear absorptive dielectrics. Physical Review A, 57(6), 4818-4841. doi:10.1103/physreva.57.4818Gralak, B., & Tip, A. (2010). Macroscopic Maxwell’s equations and negative index materials. Journal of Mathematical Physics, 51(5), 052902. doi:10.1063/1.3374670Tip, A. (2006). Some mathematical properties of Maxwell’s equations for macroscopic dielectrics. Journal of Mathematical Physics, 47(1), 012902. doi:10.1063/1.2158432Raman, A., & Fan, S. (2010). Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem. Physical Review Letters, 104(8). doi:10.1103/physrevlett.104.087401Nicolet, A., Guenneau, S., Geuzaine, C., & Zolla, F. (2004). Modelling of electromagnetic waves in periodic media with finite elements. Journal of Computational and Applied Mathematics, 168(1-2), 321-329. doi:10.1016/j.cam.2003.07.002Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579Webb, J. P., & Forgahani, B. (1993). Hierarchal scalar and vector tetrahedra. IEEE Transactions on Magnetics, 29(2), 1495-1498. doi:10.1109/20.250686Geuzaine, C., Meys, B., Dular, P., & Legros, W. (1999). Convergence of high order curl-conforming finite elements [for EM field calculations]. IEEE Transactions on Magnetics, 35(3), 1442-1445. doi:10.1109/20.767237Lu, D., Su, Y., & Bai, Z. (2016). Stability Analysis of the Two-level Orthogonal Arnoldi Procedure. SIAM Journal on Matrix Analysis and Applications, 37(1), 195-214. doi:10.1137/151005142Campos, C., & Roman, J. E. (2016). Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc. SIAM Journal on Scientific Computing, 38(5), S385-S411. doi:10.1137/15m1022458Güttel, S., Van Beeumen, R., Meerbergen, K., & Michiels, W. (2014). NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems. SIAM Journal on Scientific Computing, 36(6), A2842-A2864. doi:10.1137/130935045Lalanne, P., Yan, W., Gras, A., Sauvan, C., Hugonin, J.-P., Besbes, M., … Weiss, T. (2019). Quasinormal mode solvers for resonators with dispersive materials. Journal of the Optical Society of America A, 36(4), 686. doi:10.1364/josaa.36.000686Chesnel, L., & Ciarlet, P. (2012). T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numerische Mathematik, 124(1), 1-29. doi:10.1007/s00211-012-0510-8Bonnet-Ben Dhia, A.-S., Carvalho, C., & Ciarlet, P. (2017). Mesh requirements for the finite element approximation of problems with sign-changing coefficients. Numerische Mathematik, 138(4), 801-838. doi:10.1007/s00211-017-0923-5Zolla, F., Nicolet, A., & Demésy, G. (2018). Photonics in highly dispersive media: the exact modal expansion. Optics Letters, 43(23), 5813. doi:10.1364/ol.43.005813Lalanne, P., Rodier, J. C., & Hugonin, J. P. (2005). Surface plasmons of metallic surfaces perforated by nanohole arrays. Journal of Optics A: Pure and Applied Optics, 7(8), 422-426. doi:10.1088/1464-4258/7/8/013Lalanne, P., Hugonin, J. P., & Chavel, P. (2006). Optical properties of deep lamellar Gratings: A coupled Bloch-mode insight. Journal of Lightwave Technology, 24(6), 2442-2449. doi:10.1109/jlt.2006.874555Schider, G., Krenn, J. R., Hohenau, A., Ditlbacher, H., Leitner, A., Aussenegg, F. R., … Boreman, G. (2003). Plasmon dispersion relation of Au and Ag nanowires. Physical Review B, 68(15). doi:10.1103/physrevb.68.15542