2,974 research outputs found

    Innovation and Knowledge Management : using the combined approach TRIZ-CBR in Process System Engineering

    Get PDF
    In this article, a TRIZ based model is proposed to support the innovation and knowledge capitalization process. This model offers a knowledge base structure, which contains several heuristics to solve problems, synthesized from a large range of domains and industries and, also, the capacity to capture, store and make available the experiences produced while solving problems

    Case Based Reasoning and TRIZ : a coupling for Innovative conception in Chemical Engineering

    Get PDF
    With the evolutions of the surrounding world market, researchers and engineers have to propose technical innovations. Nevertheless, Chemical Engineering community demonstrates a small interest for innovation compared to other engineering fields. In this paper, an approach to accelerate inventive preliminary design for Chemical Engineering is presented. This approach uses Case Based Reasoning (CBR) method to model, to capture, to store and to make available the knowledge deployed during design. CBR is a very interesting method coming from Artificial Intelligence, for routine design. Indeed, in CBR the main assumption is that a new problem of design can be solved with the help of past successful ones. Consequently, the problem solving process is based on past successful solutions therefore the design is accelerated but creativity is limited and not stimulated. Our approach is an extension of the CBR method from routine design to inventive design. One of the main drawbacks of this method is that it is restricted in one particular domain of application. To propose inventive solution, the level of abstraction for problem resolution must be increased. For this reason CBR is coupled with the TRIZ theory (Russian acronym for Theory of solving inventive problem). TRIZ is a problem solving method that increases the ability to solve creative problems thanks to its capacity to give access to the best practices in all the technical domains. The proposed synergy between CBR and TRIZ combines the main advantages of CBR (ability to store and to reuse rapidly knowledge) and those of TRIZ (no trade off during resolution, inventive solutions). Based on this synergy, a tool is developed and a mere example is treated

    The TRIZ-CBR synergy: A knowledge based innovation process

    Get PDF
    Today innovation is recognised as the main driving force in the market. This complex process involves several intangible dimensions, such as creativity, knowledge and social interactions among others. Creativity is the starting point of the process, and knowledge is the force that transforms and materialises creativity in new products, services and processes. In this paper a synergy that aims to assists the innovation process is presented. The synergy combines several concepts and tools of the theory of inventive problem solving (TRIZ) and the case-based reasoning (CBR) process. The main objective of this synergy is to support creative engineering design and problem solving. This synergy is based on the strong link between knowledge and action. In this link, TRIZ offers several concepts and tools to facilitate concept creation and to solve problems, and the CBR process offers a framework capable of storing and reusing knowledge with the aim of accelerating the innovation process

    Eco-innovative design method for process engineering

    Get PDF
    Due to the environmental issues, innovation is one way to challenge eco-friendly technologies, create new process options which are needed to meet the increasing demands for sustainable production. To accelerate and improve eco-innovative design, there is a need for the computer aided eco-innovation tools to support engineers in the preliminary design phase. Currently, several computer aided innovation tools with a clear focus on specific innovation tasks exist but very few of them deal with the eco-innovation issues. Therefore the purpose of this paper is to present the development of a computer aided model based preliminary design methodology focused on technological eco-innovation for chemical engineering. This methodology is based on modified tools of the structured TRIZ theory. The general systematic framework gives the same level of importance, to the technological and environmental requirements during the conceptual design phase. Integrating environment oriented design approach at the earliest, in the design phase, is essential for product effectiveness and future development. The methodology employs a decomposition based solution approach in hierarchical steps by analysing the problem faced, formulation of the problem and the generation of possible and feasible ideas. At each step, various methods and tools will be needed. In this paper some existing tools are adapted to chemical engineering and some tools of the structured TRIZ theory are modified and improved to build a specific methodology oriented towards the increasing technological complexity and environmental issues of current designs. Undoubtedly, the selection of materials and substances for a particular generated concept, mainly affects the structure, mechanical factors (processability and dimensions) and the environmental impact. In order to deal with these environmental criteria, the resources and their impacts are considered in the upstream phase of the design process and are introduced as constraints in our model. To highlight its capabilities, the methodology is illustrated through a case study dedicated to tars and ashes issues in biomass gasification

    Design acceleration in chemical engineering

    Get PDF
    Nowadays, Chemical Engineering has to face a new industrial context with for example: the gradually falling of hydrocarbon reserves after 2020-2030, relocation, emerging of new domains of application (nano-micro technologies) which necessitate new solutions and knowledges… All this tendencies and demands accelerate the need of tool for design and innovation (technically, technologically). In this context, this paper presents a tool to accelerate innovative preliminary design. This model is based on the synergy between: TRIZ (Russian acronym for Theory of Inventive Problem Solving) and Case Based Reasoning (CBR). The proposed model offers a structure to solve problem, and also to store and make available past experiences in problems solving. A tool dedicated to chemical engineering problems, is created on this model and a simple example is treated to explain the possibilities of this tool

    Carcinoma-associated fucosylated antigens are markers of the epithelial state and can contribute to cell adhesion through CLEC17A (Prolectin)

    Get PDF
    International audienceTerminal fucosylated motifs of glycoproteins and glycolipid chains are often altered in cancer cells. We investigated the link between fucosylation changes and critical steps in cancer progression: epithelial-to-mesenchymal transition (EMT) and lymph node metastasis. Using mammary cell lines, we demonstrate that during EMT, expression of some fucosylated antigens (e.g.: Lewis Y) is decreased as a result of repression of the fucosyltransferase genes FUT1 and FUT3. Moreover, we identify the fucose-binding bacterial lectin BC2L-C-Nt as a specific probe for the epithelial state. Prolectin (CLEC17A), a human lectin found on lymph node B cells, shares ligand specificities with BC2L-C-Nt. It binds preferentially to epithelial rather than to mesenchymal cells, and microfluidic experiments showed that prolectin behaves as a cell adhesion molecule for epithelial cells. Comparison of paired primary tumors/ lymph node metastases revealed an increase of prolectin staining in metastasis and high FUT1 and FUT3 mRNA expression was associated with poor prognosis. Our data suggest that tumor cells invading the lymph nodes and expressing fucosylated motifs associated with the epithelial state could use prolectin as a colonization factor

    Inhibition of zygotic DNA repair: transcriptome analysis of the offspring in trout (Oncorhynchus mykiss)

    Get PDF
    Palabras clave extraídas del título[EN] Zygotic repair of the paternal genome is a key event after fertilization. Spermatozoa accumulate DNA strand breaks during spermatogenesis and can suffer additional damage by different factors, including cryopreservation. Fertilization with DNA-damaged spermatozoa (DDS) is considered to promote implantation failures and abortions, but also long-term effects on the progeny that could be related with a defective repair. Base excision repair (BER) pathway is considered the most active in zygotic DNA repair, but healthy oocytes contain enzymes for all repairing pathways. In this study, the effects of the inhibition of the BER pathway in the zygote were analyzed on the progeny obtained after fertilization with differentially DDS. Massive gene expression (GE; 61 657 unique probes) was analyzed after hatching using microarrays. Trout oocytes are easily fertilized with DDS and the high prolificacy allows live progeny to be obtained even with a high rate of abortions. Nevertheless, the zygotic inhibition of Poly (ADP-ribose) polymerase, upstream of BER pathway, resulted in 810 differentially expressed genes (DEGs) after hatching. DEGs are related with DNA repair, apoptosis, telomere maintenance, or growth and development, revealing a scenario of impaired DNA damage signalization and repair. Downregulation of the apoptotic cascade was noticed, suggesting a selection of embryos tolerant to residual DNA damage during embryo development. Our results reveal changes in the progeny from defective repairing zygotes including higher malformations rate, weight gain, longer telomeres, and lower caspase 3/7 activity, whose long-term consequences should be analyzed in depthSIThis work was supported by the Junta de Castilla y León (Spain) (project LE365A11-2) and the Spanish Ministry of Economy and Competitiveness (project AGL2011-27787

    A filtration model applied to submerged anaerobic MBRs (SAnMBRs)

    Full text link
    The aim of this study was to develop a model able to correctly reproduce the filtration process of submerged anaerobic MBRs (SAnMBRs). The proposed model was calibrated and validated in a SAnMBR demonstration plant fitted with industrial-scale hollow-fibre membranes. Three suspended components were contemplated in the model: total solids concentration; dry mass of cake on the membrane surface; and dry mass of irreversible fouling on the membrane surface. The model addressed the following physical processes: the build-up and compression of the cake layer during filtration; cake layer removal using biogas sparging to scour the membrane; cake layer removal during back-flushing; and the consolidation of irreversible fouling. The short- and long-term validation of the model resulted in correlation coefficients (R-2) of 0.962 and 0.929, respectively.This research has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO Project CTM2011-28595-C02-01/02) jointly with the European Regional Development Fund (ERDF), which are gratefully acknowledged.Robles Martínez, Á.; Ruano García, MV.; Ribes Bertomeu, J.; Seco Torrecillas, A.; Ferrer, J. (2013). A filtration model applied to submerged anaerobic MBRs (SAnMBRs). Journal of Membrane Science. (444):139-147. https://doi.org/10.1016/j.memsci.2013.05.021S13914744

    Improvement of online adaptation knowledge acquisition and reuse in case-based reasoning: Application to process engineering design

    Get PDF
    Despite various publications in the area during the last few years, the adaptation step is still a crucial phase for a relevant and reasonable Case Based Reasoning system. Furthermore, the online acquisition of the new adaptation knowledge is of particular interest as it enables the progressive improvement of the system while reducing the knowledge engineering effort without constraints for the expert. Therefore this paper presents a new interactive method for adaptation knowledge elicitation, acquisition and reuse, thanks to a modification of the traditional CBR cycle. Moreover to improve adaptation knowledge reuse, a test procedure is also implemented to help the user in the adaptation step and its diagnosis during adaptation failure. A study on the quality and usefulness of the new knowledge acquired is also driven. As our Knowledge Based Systems (KBS) is more focused on preliminary design, and more particularly in the field of process engineering, we need to unify in the same method two types of knowledge: contextual and general. To realize this, this article proposes the integration of the Constraint Satisfaction Problem (based on general knowledge) approach into the Case Based Reasoning (based on contextual knowledge) process to improve the case representation and the adaptation of past experiences. To highlight its capability, the proposed approach is illustrated through a case study dedicated to the design of an industrial mixing device

    The Late Neandertal permanent lower left third premolar from Walou Cave (Trooz, Belgium) and its context

    Get PDF
    Objectives We describe a hominin permanent lower left third premolar unearthed in 1997 at Walou Cave (Belgium), found in direct association with a Mousterian lithic industry, in a layer directly dated to 40–38,000 years BP. Materials and methods The taxonomical attribution of the tooth is addressed through comparative morphometric analyses, and stable isotope analyses aimed at determining the diet of the individual. Results The Walou P3 plots within the Neandertal range of variation and is significantly different from recent modern humans in all morphometric assessments. The isotope data showed that like other Neandertals, the Walou individual acquired its dietary proteins primarily from terrestrial food sources. Discussion We discuss the implications of the existence of a clearly Neandertal premolar dating to the period of the Middle to Upper Paleolithic transition in the Meuse river basin
    corecore