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a b s t r a c t

Despite various publications in the area during the last few years, the adaptation step is still a crucial

phase for a relevant and reasonable Case Based Reasoning system. Furthermore, the online acquisition of

the new adaptation knowledge is of particular interest as it enables the progressive improvement of the

system while reducing the knowledge engineering effort without constraints for the expert. Therefore

this paper presents a new interactive method for adaptation knowledge elicitation, acquisition and

reuse, thanks to a modification of the traditional CBR cycle. Moreover to improve adaptation knowledge

reuse, a test procedure is also implemented to help the user in the adaptation step and its diagnosis

during adaptation failure. A study on the quality and usefulness of the new knowledge acquired is also

driven.

As our Knowledge Based Systems (KBS) is more focused on preliminary design, and more particularly

in the field of process engineering, we need to unify in the same method two types of knowledge:

contextual and general. To realize this, this article proposes the integration of the Constraint Satisfaction

Problem (based on general knowledge) approach into the Case Based Reasoning (based on contextual

knowledge) process to improve the case representation and the adaptation of past experiences. To

highlight its capability, the proposed approach is illustrated through a case study dedicated to the design

of an industrial mixing device.

1. Introduction

Preliminary design in the industrial domain is a complex and

decisive phase in the design process. In economic terms, Douglas

(1998) has shown that the cost of this phase represents between

10% and 20% of the entire project cost but decisions taken during

this stage impact 80–90% of the total cost. In process engineering

(more particularly focused in this study) the total cost saving in

industrial application ranges from 20% to 60% according to

Harmsen (1999). Consequently, this design task has experienced

significant improvement to new computer-aided design methods

and tools whose contributions have led to rapid development

taking into account quality, safety, operability, economic and

environmental performances.

Among the new approaches to address this phase, Knowledge

Based Systems (KBS) offer many possibilities and potentialities to

support design decisions. Effective knowledge acquisition, reuse and

valorization are increasingly important assets for firms in order to

provide competitive advantages. Furthermore, KBS propose useful

and original solutions without imposing limits to creativity as

underlined by Cortes Robles et al. (2009) and Schimtt et al. (1997).

KBS intend to rapidly integrate the new scientific knowledge coming

from the fast pace of technological evolutions, and to provide users

with knowledge access. Indeed, in industrial practices to reduce

significantly the design time and cost, it is common to start an

activity relying on a previously solved experience, and then to modify

and adapt it to match the new requirements. Consequently, KBS are

suitable for numerous industrial activities like preliminary design

because it avoids starting from a scratch since some choices are

neither to do nor to question. Thus the control of the knowledge is a

necessity (i) to realize (design andmanage process), (ii) to decide, (iii)

to create new knowledge, (iv) to preserve the knowledge capital of

an organization, and (v) to impel innovation. As the environment and

the activities evolve rapidly, one of our main challenges is to propose

a system that includes a phase to update the knowledge stored, but

also to improve the confidence and quality of the knowledge

monitored during activities. Nevertheless, the elaboration of KBS is

still a difficult and extensive task, while approaches have been

proposed to overcome these issues. Scientific expectations are mainly

in knowledge representation, modeling, reuse and maintenance

because they are tremendous knowledge engineering tasks.

However, the requirements evolve and improvements of cur-

rent advanced KBS are mandatory to meet the current context



needs such as more agility and reactivity. Besides these needs,

for design applications, KBS must also enhance their dynamic

dimension to encourage rapid and flexible responses to some

choices and to spread their impacts in the rest of the design

process. This dynamic aspect in the adaptation phase of the

KBS is a key milestone for knowledge reuse and continuous

improvement of the performance of the system. Thus one goal of

this study is to propose a KBS meeting these requirements of

dynamic.

This paper is more focused on process engineering, which is the

part of engineering that deals with processes that convert raw

materials into more useful or/and valuable products through

several transformations, under economic, environmental, safety,

and energy constraints. A chemical process can be decomposed

into individual sub-processes called unit operations: chemical

reactors, separators, mixers, heat exchangers, etc. Due to the

new industrial context, this discipline has undergone significant

changes that strongly affect the design phase: the design and

production of specialty products with high added value, introduc-

tion of numerous innovations on multi-functional units to ensure

process intensification, and so on. As a result, a huge amount of

new knowledge was and is still created. Optimization and heuristic

approaches were the traditional methods to address the process

design issues. For the former, we have a mathematical representa-

tion of the problem with the formulation of a multi-criteria

objective function. However, the drawbacks of this approach are

as follows: a huge computational effort, the difficulty to include

uncertainties and ill-defined problem. The most important dis-

advantage is probably that the solution is closely dependent on the

initial set of possible alternatives represented under the form of a

superstructure. Consequently, it depends on the knowledge of the

design team and not on the whole knowledge available. For the

latter, process engineer has many heuristics for the traditional

design problem, but for the new multi-functional units they are

still to be created. Furthermore, as noticed by Li and Kraslawski

(2004) their major limitations are their impossibility to manage

the interactions between different design levels and the difficulty

to handle multi-objective problems. This is due to the sequential

nature of this approach.

Due to both the limitations of traditional methods and the

mutation of the industrial context, there is a need to find new

efficient approaches to capitalize the new implicit and explicit

design knowledge. As a consequence, different KBS have emerged

in process design based on methods such as Conflict Based

Approaches and Case Based Reasoning (CBR). The first ones are

based on modified TRIZ methods and tools to make them more

easily applicable in the process engineering domain like in the

studies of Li et al. (2003) and Negny et al. (2012). These approaches

are more focused on the phase of the research of new concepts.

CBR is also suitable because numerous design problems become

recurrent and these experiences can be easily reused. Their

applications to assist in design decisions have been studied and

improved for process design in the last decades as demonstrated

in Negny et al., (2010). But CBR suffers from three major draw-

backs. The first two are knowledge elicitation and case adaptation.

These drawbacks are commonly encountered in numerous CBR

systems as proved by Chebel-Morello et al. (2013), who explained

that the time of knowledge workers dedicated to these phases is,

respectively, 37.7% and 45.9% of their total time. The third draw-

back is more specific to the application of CBR in design, where

two categories of knowledge, i.e. contextual (corresponding to past

experiences) and general (corresponding to rules, constraints, etc.

), must be combined to support a wide range of design decisions

on the one hand, and to improve the quality of the solution on the

other. Unfortunately, CBR systems only aim to encompass con-

textual knowledge. Thus the challenge of this work is to raise the

level of maturity of KBS for process engineering design; as a

consequence, the objective of this work is twofold:

– From the process engineering design point of view, the aim is

to improve the current CBR systems, which are mainly focused

on the system to design (unit operation or the process) but not

on design method but also to include the dynamic aspect.

Moreover, the proposition concerns an approach that combines

the two kinds of knowledge, previously cited.

– From the knowledge management point of view, the goal is to

minimize the knowledge elicitation effort during the adapta-

tion phase. Another important objective is to evaluate the

quality and usefulness of the acquired adaptation knowledge

in order to increase the skills of the CBR system.

Concerning the first point, among Artificial Intelligence (AI)

approaches to capitalize and reuse knowledge Constraint Satisfac-

tion Problem (CSP) has also been successfully applied in various

activities and more particularly in design applications. CBR and

CSP rely, respectively, on contextual and general knowledge. Due

to this complementarity, this paper proposes coupling these two

approaches, to address the adaptation problem in CBR. The main

motivation is to achieve a synergy that produces a better knowl-

edge exchange, capitalization and reuse.

For the dynamic aspect, several issues must be solved, with

different approaches proposed in the literature. Karray et al. (2014)

suggested using a trace based system whose goal is to extract new

knowledge rules about transitions and activities in the mainte-

nance process. Traces are considered as knowledge containers.

This interesting approach is well suited for very dynamic and

reactive system as in the maintenance field, but in the domain of

design the time constants are lower. In another approach Craw

(2009) transforms the traditional CBR into an agile one. In

accordance with this work and with the work of Cordier et al.

(2007), the traditional CBR cycle is modified to introduce an

interactive process with the expert in the reuse step in order to

create an online knowledge acquisition, but also to add agility to

our KBS.

Concerning the second point to develop our adaptation

method, we were interested in the different approaches proposed

in the literature. Adaptation in CBR has been widely studied in the

1990's (Smyth and Keane, 1996; Pu and Parvis, 1995, 1997; Voss,

1997; Hanks and Weld, 1995; Craw et al., 2006), but no general

models have emerged. Since then, this CBR step has received little

attention as confirmed by the analysis of the research theme in the

CBR literature realized by Greene et al. (2008). However, the recent

evolutions on differential adaptation proposed by Fuchs et al.

(2014) seem to give promising ways for an operational formaliza-

tion of adaptation, while it is currently limited to numerical

problems. The main idea is that small variations between pro-

blems are related to variations between solutions as in differential

calculus. More generally, Chebel-Morello et al. (2013) have classi-

fied the main strategies to deal with the adaptation problem into

three categories: (i) Adaptation Knowledge Acquisition that aims

to obtain adaptation knowledge and to model them through

general methods and techniques; Lieber et al. (2004) and Lieber

(2007) provide a comparison and an overview on this strategy. (ii)

Specific adaptation strategies depending on the application

domain or on the case study. (iii) General adaptation methods

independent of the application. For instance the method based on

the dependency between problem and solution descriptors is the

most advanced and used: Fuchs et al. (2000) for computer

configuration, Chebel-Morello et al. (2013) for diagnostic. As one

motivation of this paper is to improve the efficiency and accuracy

of a CBR system for process engineering design, the adaptation

method proposed is based on adaptation knowledge acquisition



strategy. Indeed, specific adaptation strategy could be deployed for

each kind of unit operation (reactor, distillation column, heat

exchanger, etc. ) but we lose in generality and the creation of a

specific method for each type of unit operation would be a

tremendous effort. The method based on dependency aims to

establish the direction and the strength of the relationships

between problem and solution features. Unfortunately, in process

engineering design the dependencies are impossible to establish

immutably because they depend on many factors, e.g. the operat-

ing conditions, the occurring phenomenon that can be neglected

at a scale and be overriding at another scale. Furthermore, the

strengths of the links are difficult to establish due to the strong

linearity of the phenomenon that occurs in a chemical process,

their dependences on the operating conditions and on the chemi-

cal components in the mixture.

The remainder of this paper is organized as follows. In the next

section, the backgrounds of CBR, adaptation knowledge acquisition

and the knowledge elicitation issues are described. In Section 3 we

discuss the interest for combining CBR and CSP and propose a

framework to capture expert knowledge. Section 4 describes the

methodology and highlights the tool capabilities through a case

study dealing with the configuration of an industrial chemical

mixer. Before drawing conclusions, in Section 5 some tests are

realized to quantify the reusability of the adaptation knowledge

acquired.

2. Backgrounds

2.1. Case based reasoning

The main feature of CBR is its ability to emulate human

reasoning for solving new problems by remembering past experi-

ences. The general principle according to Schank (1994) is that

similar problems have similar solutions. In CBR, past experiences

are stored as cases; each one encloses the description of a problem

(source problem) and its associated solution (source solution). A

new problem, namely the target problem, can be solved by

retrieving the most similar cases and relying on the source

solutions. Various models have been developed in order to provide

a systematic way to perform CBR. The R5 model, illustrated in

Fig. 1, which is an expanded version of the model of Aamod and

Plaza (1994), is now commonly implemented in many practical

CBR systems.

! During Representation, the problem is described with a predefined

framework. Depending on CBR goals, problems and solutions can

be represented according to two major approaches: textual (e.g.

simple binary or text files) or structural (i.e. based on attributes

and predefined values).
! Retrieval is the process of matching and selecting from the case

memory, one or more cases that can be reused to solve the target

problem. Here, the main issue is the similarity measurement; a

recent overview in similarity measures is given in Qi et al. (2011).

Similarity estimation often relies on a mathematical distance

between problems, inferring that retrieval distance is propor-

tional to the adaptation effort. But several authors like Massi et al.

(2007) or Smyth and Keane (1998) argue that the most similar

case is not necessarily the easier to adapt or the most relevant to

solve the target problem. Indeed, retrieval based on similarity can

generate an incapacity for CBR to solve a problem or worse in

some cases to propose an inadequate solution. Consequently, they

introduce a new criterion, i.e. case adaptability, to evaluate the

adaptation effort in order to improve the retrieval performance.
! In most practical approaches, the Reuse step is quite simple: the

source solution without any modification is proposed. But most of

the time the retrieved solutions must be adjusted to withdraw the

discrepancies between the target and source problems and to fit

the target problem requirements as illustrated by Maher and Pu

(1997). This leads to one of the most important, problematic and

challenging subjects in CBR: adaptation. Many authors like Leake

et al. (1996), Cordier et al. (2007), and Smyth and Keane (1996)

have underlined that adaptation adds the intelligence to what

would be simple patterns or tendencies.
! In the Revise step, the proposed solution must be tested to

validate its adequacy and relevance with respect to the target

problem, or to consider what actions are to be taken to

withdraw the remaining discrepancies.
! Once a satisfactory solution is reached, the current problem

and its solution form a new case that can be retained in the

case base, only if it brings a real added value to the CBR system.

This new learned case increases the CBR system’s effectiveness

by enlarging its coverage of the problem and solution spaces.

The five steps detailed above represent the essential compo-

nents to build up a CBR system, even if it has other important

issues whose significance is crucial; case acquisition process, case

base structuration and indexation.

CBR provides a set of particular advantages concerning the

design activity: reducing the knowledge acquisition task, its ability

to support long-term learning, its capacity for reasoning with

incomplete or imprecise data, its vicinity with human reasoning

and its ability to create and to maintain a computer decision

support tool. Nevertheless, it is necessary to provide an important

number of cases to have significant results. Unfortunately, this is

rare in preliminary design. To overcome this drawback, the CBR

system must contain an efficient adaptation module.

2.2. Adaptation knowledge acquisition

Despite that the knowledge stored in source cases gathers a

huge part of the problem solving expertise, the adaptation knowl-

edge acquisition to achieve the solution refinement can be

demanding. It consists in modeling and storing an adaptation

process performed by an expert in order to capitalize this new

knowledge. Adaptation patterns are stored in the case base to

exploit them in future adaptation episodes. Few studies on

adaptation knowledge acquisition have been conducted, but after
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reviewing the literature on the subject we can identify four

principal characteristics, as illustrated in Fig. 2.

For knowledge extraction, two types of sources are identified:

external or internal to the CBR system. Internal adaptation knowl-

edge can be extracted from the differences between the cases

stored in the case memory. Here the main assumption is that the

case base is considered as a representative sample of differences

between problems that could be encountered during adaptation.

For instance, Craw et al. (2006) have proposed an introspective

learning approach where cases provide a source from which

representative adaptation knowledge can be extracted. This

approach is easy to operate and implement, but it does not allow

inferring explicable knowledge. Furthermore, it remains the ques-

tion of confidence we can have to the knowledge extracted.

Among the external sources the most obvious is the expert, who

can be solicited to formulate the new necessary knowledge.

Recently, the World Wide Web has emerged as a new category

of external sources which offers access to various knowledge

bases, for example the WebAdapt system presented by Leake

and Powell (2007). There is also a research activity based on the

semantic web languages as in the work of Fidjeland (2006).

The methods for knowledge acquisition may differ depending

on the acquisition mode: manual, automatic or semi-automatic. In

the manual mode, experts are interviewed during specific adapta-

tion knowledge acquisition sessions to explain how they solve

problems. This way to proceed needs a significant work in knowl-

edge engineering, leading to very complex and time-consuming

tasks. In return, the extracted knowledge is accurate with a high

degree of confidence. The automatic alternatives consist in

extracting adaptation knowledge from data sets. For instance,

machine-learning or data mining techniques are often used to

produce heuristics or to develop automatic processes. While they

are easy to operate, the knowledge generated is difficult to

understand, to exploit and to reuse due to its intrinsic quality.

Furthermore a memory gathering many cases is required in order

to avoid inaccuracies and approximations on heuristics. But as

explained before, in preliminary design, it is unusual to have such

a vast case base. Semi-automatic approaches combine both pre-

vious ones, i.e. some knowledge elements are generated auto-

matically and then they are submitted to an expert for validation.

The adaptation knowledge can be acquired online or offline. Offline

acquisition can be time consuming. Online acquisition takes advantage

of an adaptation episode to solicit punctually the expert. This

approach is motivated by the goal to reduce the effort of knowledge

engineering. Nevertheless, the major drawback is the number of

iterations that the adaptation can necessitate. Badra et al. (2009)

graphically sum up these characteristics in Fig. 3. As a consequence, it

would be more effective to have an online sub-process to check the

solution and to acquire expert knowledge in particular when it is

necessary to repair the solution or when an adaptation failure occurs.

After corrections, the expert knowledge is updated and added to the

adaptation knowledge container.

Despite various formalisms such as constraints, adaptation cases

with recursive CBR like in Jarmulak et al. (2001), rules are commonly

used for knowledge formulation. Unfortunately, they are not appro-

priated for process engineering design even with the current

improvements, for instance by adding a measure of confidence

D'Acquin et al. (2004). Indeed, rule-based systems have shown some

limitations, such as their difficulty to manage and to update rules,

their ineffectiveness due to the complexity and non-linearity of the

phenomenon that occur in chemical processes.

Regarding the scope of application and goals of our CBR system,

we decide to acquire adaptation knowledge with an expert in order

to have great confidence in the knowledge; we also use an interactive

approach (online and manual acquisition) to reduce knowledge

engineering effort. Consequently, to elaborate our CBR system, we

must address the adaptation knowledge elicitation issue.

2.3. Knowledge elicitation

In AI, elicitation allows one to formulate the expert reasoning in

an inference engine, thus giving the possibility to artificially repro-

duce the situation analysis and the decision making. In knowledge

management (KM), the goal of elicitation is to help the expert

formalize his knowledge in order to save and share it. Here elicitation

aims to transform tacit knowledge in knowledge as explicit as

possible and therefore easier to transmit. Elicitation is often essential

to organize and ensure the sharing of knowledge. In our approach,

we try to couple both visions of elicitation: capitalization of the

expert reasoning as in AI but also facilitating adaptation knowledge

formulation. Concerning knowledge formalism, the adaptation

operators are retained because they allow one to decompose the

adaptation knowledge into individual containers, to make them

more easily reusable, but also to facilitate knowledge maintenance.

In the proposed approach, the whole additional knowledge

needed is captured in the form of an adaptation method, which

encloses all the changes that affect the source solution. As in the

CBR paradigm the knowledge included in the adaptation stage is

less expensive than the knowledge required to build a solution

from scratch; let's assume that changes can be made by a small

finite number of successive elementary steps. As proposed by

Cordier et al. (2007) each elementary step corresponds to a single

adaptation operation traduced by an Adaptation Operator (AO).

These operators symbolize the actions that the expert carries out

on the source solution to obtain a satisfactory solution. An

adaption method i (denoted AMi) is composed of a finite set of

mi successive AO.

AMi ¼ AOi
j

n o

with jЄ 1;…; mi
n o

mican be variable from

one method to another:

The decomposition into a finite list of successive AO allows having

an accurate and sharp description of the modifications. Furthermore

after each AO is created, the expert has the possibility to add a

comment to explain the interest of this operator and thus to improve

confidence in the adaptation knowledge capitalized. The combination

of available information in a case, the AO and the expert's comments

produce a knowledge episode, which is often easier to analyze, more

credible and consequently easier to reuse. Besides, for each single AO it

will be possible to distinguish if it is rather to include in the framework

of the general knowledge domain or rather in the framework of the

specific modifications to the problem studied. This distinction enables

one to facilitate the knowledge maintenance.

As explained before, the manual knowledge acquisition is retained

because we do not have enough data to automatize the acquisition

process. On the one hand, manual acquisition produces more con-

fidence in the knowledge, but on the other hand, it requires tremen-

dous effort. This drawback can be partially removed by taking

advantage of an adaptation episode to acquire knowledge online by

requesting punctually the expert. Unfortunately, the traditional CBR

Source Acquisition timeAcquisition method Knowledge

Formulation

Adaptation Knowledge

Acquisition

Fig. 2. Taxonomy of the different characteristics for adaptation knowledge

acquisition.



cycle does not provide sufficient interactivity for this online acquisition.

In practice, Cordier et al. (2007) have proposed modifying the tradi-

tional CBR cycle to introduce a new interaction loop at the adaptation

step to create this interactivity. This interaction loop is twofold: to

facilitate adaptation knowledge acquisition and to quickly visualize the

consequences of each decision.

For our approach, the general framework proposed by Cordier et al.

(2007) has several important drawbacks: (i) it uses an adaptation

method based on dependencies and differential adaptation which is

not relevant for us as explained before, (ii) all the adaptation process is

automatized, in their prototype there is a virtual expert who can not

only automatically detect the adaptation errors but also correct them

with the good value, (iii) their method and AO are limited to numerical

values for features, this is too restrictive especially when we want to

acquire knowledge related to the design method, (iv) there is no

decision support system to choose an appropriate adaptation method

when several relevant methods are proposed to adapt the source case,

(v) there is nothing on the usefulness and the quality of the acquired

knowledge, and (vi) there is no link with the next CBR step, i.e.

maintenance. Consequently relying on this previous work, the next

step for our approach is to propose a new formalism for the AO but

also a new way to manage the new acquired knowledge. The CSP is

used in the CBR to reach the different objectives of our approach.

3. CBR-CSP coupling to support design

3.1. Constraint satisfaction problem

In CSP, the knowledge is explicitly expressed through a mathema-

tical model composed of variables, definition domains and constraints

such as logical relations, mathematical expressions or domains of

validity. Constraints express the authorized and/or forbidden combi-

nations of values for the variables. The CSP approach offers a natural

way for representing problems. The new problem is submitted to the

knowledgemodel via the variables, and then a reasoning process is led

through constraints to progressively restrict the domains by retaining

only consistent values. The designer interacts with the constitutive

elements of the model to add his successive and progressive decisions

which are propagated through the constraints. This process is repeated

until one (or several) solution that respects all the constraints is

reached. The two main mathematical solving techniques are filtering

and search. CSP provides many advanced algorithms with a limited

computational cost to deal with highly combinatorial problems. The

major disadvantage of this approach is that it requires a huge effort to

identify, extract, interpret and formalize knowledge and to build the

reasoning model. This implies a sharp and deep understanding on the

activity. However, the systems managing constraints have the advan-

tage of quickly providing original solutions, to establish when a

problem does not have one or to find all the possible solutions.

3.2. The reasons of the coupling

At first sight the two approaches seem contradictory because

CBR assumes that there is not enough explicit knowledge and

therefore past experiences are used, whereas CSP requires a full

understanding of the concrete domain. The first step of the

proposal is to drive a deep analysis of these two approaches to

establish some potential cooperations. A detailed analysis of both

reasoning paradigms is given in Table 1.

Based on this comparison, the integration of the CSP reasoning

process in the CBR offers several benefits such as: (1) to improve

and make more accurate case representation, (2) to develop a

more systematic and efficient retrieval mechanism, (3) to provide
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Table 1

CBR and CSP feature's comparison.

CBR CSP

Operational method. Heuristic method.

Use of tacit and contextualized knowledge. Use of explicit, general and formalized knowledge.

Analogical reasoning in a domain with small quantity of knowledge. Constraint-based reasoning, relying on a deep knowledge on the

activity.

Possibility of reaching solutions to complex problems even when the application domain is not

well known by the user.

Possibility of reaching all solutions to complex problems. The user

must understand the problem situation.

Ability to produce solution rapidly. No theoretical warranty on finding solutions.

Thanks to its memory, CBR can offer solutions without the need to start from scratch. Because of the lack of memory, it requires the user to make a detailed

analysis of the CSP model in case of failure.

Flexibility in knowledge modeling. The information contained in the cases is not necessarily

conditioned by a particular formalism.

Richness it offers in terms of modeling because constraint expressions

are not limited to mathematical relationships.

The limitation to solve similar problems and therefore no guarantee to find optimal solutions. It can find the optimum by introducing an objective function.

The effectiveness of such a system is highly related to the coverage of the problem and solutions

spaces.

The effectiveness lies in the proper modeling and the performance of

the algorithms for resolution.

It will always find a source case more or less similar to the target problem and therefore such a

system is unable to establish when a problem has no solution.

The possibility of controlling the number of solutions. It can also

establish that a problem does not have solution.

User interaction is possible if an appropriate adaptation strategy is chosen. No interaction during the problem solving.



a way to adapt solutions, (4) to propose a strategy to reduce

problem complexity thanks to constraints propagation, and (5) to

efficiently manage design preferences (Sqalli et al., 1999; Ho et al.,

2010; Galushka and Patterson, 2006). Similarly, the CBR offers

several advantages to the CSP solving process, among them the

most important are: (1) the ability to propose CSP models without

building them from scratch, (2) to complete models when it

remains fuzziness or incompleteness on the domain knowledge,

(3) to reuse an earlier experience to improve the resolution

process, and maybe the most important, (4) to add a learning

method and a memory to the CSP process (Sqalli et al., 1999;

Roldan et al., 2011; Wang and Liao, 1997).

3.3. Related works integrating CBR and CSP

In the literature, several authors present a synergy between CBR

and CSP; for instance the CBR system JULIA proposed by Hinrichs

(1992) was one of the first to incorporate the CSP approach in CBR for

kitchen recipes. In the work of Vidotto et al. (2007), CSP was used as a

tool to analyze dynamic combinatorial problems in restaurant man-

agement. A similar integration is described in the CADRE system of

Hua et al. (1996) in the field of architectural design, where the CSP

approach and the rules of production of topological knowledge are

integrated to the CBR. The CBR system of Pu and Parvis (1995, 1997),

which formalizes the adaptation process with constraints, was

applied to the configuration domain. The same approach was used

by Ruet and Geneste (2002) in order to assist the design of plant

operations, where the CSP technique is used to guide the adaptation

phase of the retrieved solution. Several other approaches integrating

CBR and CSP were developed, pointing out the effectiveness of this

coupling; a detailed state of the art was carried out by Sqalli et al.

(1999). In their work, the coupling is applied to compensate incom-

pleteness and incorrectness of CSP models in network control

protocols for diagnoses interoperability. More recently, Inakoshi

et al. (2011) have proposed a framework for product configuration

using CBR to generate criterion by estimating the user preferences on

products. Then the CSP module classifies the resulting configurations

by strictly preserving the user requests and definitions. Lopez (2003)

also use the CSP formalism to represent cases in CBR to reach a

solution for scheduling problems. The adaptation is led thanks to the

CSP techniques. In this approach, only adapted cases that have led to a

satisfactory solution are stored in the base. This reduces the effort

during the base maintenance and keeps it within a reasonable size.

Neagu (2005) proposes a generic platform for the case adaptation and

presents new algorithms for an interchangeability of the CSP parts in

order to facilitate the adaptation in CBR. He validates his approach

with planning, scheduling and configuration problems. In the same

way, Medjdoub (2009) couples the two approaches to deal with the

adaptation problem in the architectural design domain. The system

substitutes the parts of a retrieved solution which do not correspond

to the new requirements, and starting from the incomplete solution,

the system identifies the inconsistent parts and solves them sepa-

rately and successively through the CSP algorithm, reducing consider-

ably the complexity of the problem. Wang et al. (2009) proposed an

algorithm that integrates the two approaches applied to “online”

product configuration: the user inputs his request then the CBR

recovers a similar case, which is modified according to conditional

constraints. Recently Vareilles et al. (2012) have summed up these

previous couplings into four possibilities:

! To validate the knowledge stored either in one or in the other.

Cases are used to validate or invalidate the constraints of a CSP.

Conversely, a CSP can be used to qualify the consistency of a

CBR case with respect to its model of constraints.

! To modify or create knowledge in the CSP. The analysis of a case

of CBR can add constraints to the CSP. Similarly, the CSP can be

used to complete CBR cases when some features are missing.
! To mix them sequentially. The CBR allows extracting the most

similar cases and then CSP to perform adaptation. In the other

possible sequence, the CSP permits one to limit the possible

values for the features while maintaining the consistency and

then CBR allows one to retrieve the most similar case in order

to adapt it.
! To combine general and contextual knowledge. In their propo-

sal they combine the two approaches in a simultaneous and

iterative manner according to the availability of knowledge by

taking into account contextual constraints. The general knowl-

edge prunes the solution space and contextual knowledge gives

more accurate advices to the user. They applied their approach

in the field of maintenance.

3.4. Discussion

According to Vareilles et al. (2012), only the last two possibi-

lities really deal with knowledge processing. The other ones were

more focused on knowledge validation or completeness, which is

out of the scope of our study. Like in Lopez (2003), in our proposal,

CBR is used to find the appropriate CSP model which is then

adapted. Purvis (1998) has demonstrated that CSP techniques help

formalize and treat the process of adaptation but also to system-

atize and give flexibility to the CBR. This way to proceed is

particularly suitable when we have domain-specific CSP models.

However, with the retained combination of both approaches, there

are some important drawbacks:

! In the current approaches, it is always assumed that the

adaptation is a human process and not a processed one. But

to better assist designers, this phase must rely on knowledge

processing.
! The knowledge enrichment, thanks to the adaptation phase, is not

correctly exploited. Indeed, after the model modifications, we

must be able to distinguish between specific knowledge only

valid for the problem studied and the general knowledge. Of

course the former must be stored for a future reuse and to

improve the CBR system skills. As they are specific, they are not

candidate to be included in the original CSP model. Inversely, the

general knowledge could be included in the model to improve it.
! Successful adaptations are stored as new case in the base,

leading to a case base size that increases sharply. Even if it is

mandatory to store the new modifications, it would be more

valuable to find an alternative that requires a lower storage

space while allowing easy maintenance.
! More interaction is needed to add agility. During adaptation,

the system should offer to the designer the opportunity to see

and evaluate the consequences of his choices and more

particularly the progressive reduction of the solutions space.
! The expert is the only person who interacts with the knowledge

model for knowledge maintenance and evolution (CSP model

evolution). But, most of the time, it is a time consuming human

process, which needs to be simplified and partially automated.

Consequently, the proposed approach must take into account the

requirements on knowledge acquisition and storing while

remaining compatible with the next step of the CBR cycle.

For these reasons the integration of another knowledge acqui-

sition paradigm detailed in Section 4 is proposed. It would allow

improving the interaction with the expert and the confidence in

the knowledge stored in the system.



4. Methodology

In this section, the whole methodology is presented. It gathers

all the elements detailed and discussed in the two previous

sections: case representation, the AM, the AO, the created inter-

active loop, and the test procedure for knowledge reuse. It also

encompasses all the proposals and new contributions to provide

an answer to the drawbacks identified previously. Fig. 4 illustrates

the adaptation process integrated in the new CBR cycle. The

following sections describe and exemplify the various steps.

4.1. Case representation

4.1.1. Problem and solution descriptions

As it is broadly accepted, the information targeted in a case can

be decomposed into three parts: the problem description, its

associated solution, and some explanations and justifications.

The new problem is described with an attribute-value representa-

tion where some feature values are used as input data for the CSP

solving. In our system, the solution part is composed of a CSP

model. First this choice is in accordance with our KBS objective to

easily update or add new knowledge to ensure viability and

sustainability of the system. Another argument is that we prefer

to focus the capitalization on the design method, rather than on

the solution, because the method is often richer in knowledge,

more generic and more easily transposable. Furthermore, for some

systems, it is also more advantageous because technology can

evolve rapidly and become obsolete. Finally the CSP model was

also chosen due to its ability to reach a coherent solution, even

when the problem statement is incomplete and complex, which is

often the case in preliminary design.

4.1.2. Example of CSP

The case study is focused on an industrial mixer which is an

important unit of operation for creating favorable hydrodynamic

conditions for heat and mass transfer. It is required at many stages

of a chemical process: from the storage of raw materials, through

the reaction process, or to put phases in contact. Depending on the

mixer configuration several hydro mechanical phenomenon can

occur: homogenization, heat and/or mass transfer, suspension,

dispersion, emulsifications, etc. These phenomena are used in

chemical or physical operations like chemical reaction, extraction,

absorption, desorption, dissolution, crystallization, etc. A bad

technological mixing configuration or a wrong sizing can lead to

erroneous features or outputs with disastrous consequences for

the whole chemical process. Mixing is used in numerous industrial

domains, for instance: chemistry, pharmaceutical, food industries,

and fine chemistry. Among all the various possibilities for a mixing

system, this example is limited to mechanical systems by rotation

because most of the stirring processes use these technologies.

The goal of the CSP is to find the different configurations for a

mixer according to desired operating conditions. As a conse-

quence, the user must specify some input data before to run the

model. They are related to the characterization of the phases,

physical data, the type of operation, the hydrodynamic character-

istics aimed, and if there is or not a thermal exchange. It is

important to notice that in preliminary design, information is

often poorly and ill-defined but only an order of magnitude or

even qualitative information can be specified. As a consequence,

problem features filling is flexible enough to accept one specific

value, an interval of possible values or qualitative information

(High, Medium, Low). In Annex 1, all the data required for the

problem description are detailed.

The mechanical agitation device is assumed to be composed of

three parts: the agitation system, the impeller and finally the

vessel. As the technological choices for such a device are numer-

ous, they require a detailed description. The agitation shaft is

described with two variables: the power of the agitation engine

and the type of agitation shaft. For the impellers, designers must

choose among a wide variety (one variable) sorted by the

generated liquid flux (axial, radial or tangential flow), they must

also be precise on the position of this impeller (two variables). To

describe the geometry of the vessel, five variables are mandatory:

Fig. 4. CBR adaptation process.



geometry of the vessel, the presence (the size) and the position of

the baffles, and finally the presence (the type) and the size of the

heat exchange system. Each variable is associated with a definition

domain, Annex 2.

All the constraints cannot be presented but they can be

classified into three categories:

– conditional constraints: a constraint may or may not be present

in the model, depending on the operating conditions. For

example for an adiabatic operation the variables and con-

straints dealing with the heat exchange system are automati-

cally eliminated.

– continuous constraint: implicit formulation with an analytic

formula

For example the constraints on the power of the engine or the

turbine (depending on the type of impeller).

PengineZ2Pturbine

where Pturbine ¼ ρnω3
nf posð Þn Dtð Þ5; ð1Þ

ρ is the¼density of the mixture, ω the¼rotation speed, pos the

turbine position, and Dt the¼turbine diameter.

- Discrete constraints: explicit enumeration of the possible

combinations expressed in intention. For example for the

selection of an impeller several conditions have to be consid-

ered: for homogenizing miscible liquids the impeller just acts

as a generator of movement, to ensure mass transfer between

phases the impeller acts as a promoter element, when required

it can improve drops formation of the dispersed phase in the

continuous phase, to put solid in suspension in a liquid the role

of the impeller is twofold: lifting the particles from the bottom

of the tank and keeping them in suspension. This non-

exhaustive list demonstrates the importance for the choice of

the appropriated impeller.

4.1.3. Adaptation operators and methods

Every time, a retrieved CSP model is adapted, all the modifica-

tions are stored as one adaptation method. The adaptation method

(AM) becomes the means through which expert knowledge is

acquired and may be capitalized. As an AM comes from a root CSP

model, the third part of the case representation encompasses the

list of AM linked to the retrieved case. The storage of AM instead of

a complete case permits one to keep the case base in a reasonable

size but also to eventually store failure.

As each model is formulated as a CSP, the possible actions are

centered on the three constitutive elements of the model: vari-

ables, domains and constraints. Consequently, the AO corresponds

to the following possible actions:

! Add: a new variable, a new constraint or a new value in a

domain.
! Change: the domain of a variable, the formulation of a con-

straint, one value in a domain.
! Delete: a variable, a constraint, a value in a domain.

These modifications generate different levels of difficulty. Some

of them are very obvious like adding a value in a domain, but

others are more complex, e.g. add a new variable. Indeed to keep

the model coherence, a definition domain and constraints must be

added or modified to include the new variable. Some tests are

implemented in order to ensure this coherence. The retained

formalism allows one to easily modify these operators and to

introduce problem specificities such as expert requirements,

specifications, etc. Thus, for each AO, it is possible to distinguish

if the modification relies on domain specific design knowledge or a

requirement specific to the problem faced. Fig. 5 illustrates how

AO are defined.

Moreover to preserve model reusability, some metrics are used

to qualify the AM (detailed in the next section). The AM that does

not meet a minimum threshold on these metrics will not be taken

into account in the maintenance step.

4.2. Retrieval and reuse

4.2.1. Choice of an adaptation method

Once the target problem is described, the CBR system retrieves

a similar source case according to the user inputs and require-

ments. This source case encloses a CSP model called βsource and

the adaptation methods linked to the CSP model, named AM

(source) (point 1 in Fig. 4). One of our proposals is to improve

adaptation knowledge reusability by measuring the performance

of the AM to support the user choice. Indeed, each AM(source)

performance is evaluated through four indicators: two were

inspired from the approach of Vernat (2004) and the last two

were specifically created for the evaluation of design models:

1- Parsimony: is the ability to obtain a solution with a minimum

number of changes in the model;

2- Accuracy: defines the number of possible solutions calculated

by this model;

3- Rate of comments: all the AO belonging to the framework of

the general knowledge must be commented to explain the

reason of this model modification. Even if they are not

mandatory, comments on AO dedicated to specific modification

improve this criterion but to a lesser extent. The comments

improve AO reusability and knowledge quality;

4- Cyclomatic complexity: indicates the complexity of a program

by measuring the number of linearly independent paths,

computed using the control flow graph of the program.

The goal of these criteria is to qualify the modifications, and thus to

limit the intake of adaptation knowledge to what is strictly necessary

for its improvement. These indicators lead to reflect the nature,

relevance and interest of the adaptation knowledge introduced and

thus to improve its quality and preserve its reusability. With these

indicators, we not only propose a decision support for the user but

also we try to anticipate the step of maintenance (not implemented

yet) of the adapted knowledge. Indeed, AM(source), which do not

reach a minimum threshold on the metrics, are primarily analyzed to

understand the root cause of the problem for either removing them

Fig. 5. AO description.



from the base, or to improve their formulation to make knowledge

more exploitable (when this adaptation knowledge is mandatory but

in the current form it is unusable). Since these criteria can be difficult

to prioritize, the Pareto front technique is envisaged to assist the user

in the selection of an AM, by offering the best compromise between

them (step 1a in Fig. 4). After AM selection, the βsourceþAM(source)

model is solved, step 2 in Fig. 4. The calculated solution is displayed to

the user for validation. If it is satisfactory the process continues with

step 5, only if the AM has not undergone changes otherwise with step

6. However if the solution is not satisfactory then the adaptation loop

is activated.

4.2.2. Case study: problem description, retrieved solution and AM

selection

The case study will serve as a recurring example to illustrate

each phase of the methodology. The target problem concerns the

production of propylene glycol in a chemical reactor. Propylene

glycol is used as chemical feedstock for the production of unsatu-

rated polyester resins and also as a humectant, as a solvent, as a

preservative in food or in tobacco products and introduced in

personal care products. In our case study, propylene glycol is

produced as a solvent for pharmaceuticals, including oral, inject-

able and topical formulations. Industrially, propylene glycol is

produced by the hydrolysis of the propylene oxide (R1). Unfortu-

nately, there are two other secondary chemical reactions (R2 and

R3). These reactions are highly exothermic. Furthermore, the

temperature inside the reactor must be lower than 45 1C for

security reason. Moreover, the greater the temperature is, the

more the secondary products are produced. Besides to meet

design requirements, the generic model requires some input

parameters from either the needs of the designer, the functional

requirements specification, or preliminary calculations. In the case

study, the initial parameters to be provided by the user are: the

phases to mix and their properties (e.g. viscosity, density, solubi-

lity, pressure, etc.), type of operation (dispersion), the desired

hydrodynamic characteristics (turbulence) and in this case study

the presence of a thermal system due to the high thermal flux to

transfer at the reactor wall to respect the security constraint.

C3H6OþH2O-C3H8O2 ðR1Þ

C3H6OþC3H8O2-C6H14O3 ðR2Þ

C3H6OþC6H14O3-C9H20O4 ðR3Þ

The retrieved βsource deals with a generic model for mixer

configuration, for which the formulation is detailed in Section 4.1.2.

This case contains also ten different adaptation methods. As the goal

is to find a relevant mixer configuration, in a first step we may find

the widest set of possible configurations and then progressively

reduce it. In these conditions the choice is based on the three

indicators: parsimony, rate of comments, and cyclomatic complexity.

In the Pareto front provided by the decision system, the upper portion

of the curve, on Fig. 6, suggests that a good AMmay exist in this zone

for the three indicators. The two remaining AM1 and AM6 are very

close; thus, it is difficult to decide. We can notice that AM 3, 5 and

7 are out of the front and the other five are dominated. The two

retained AM are edited and the AO are analyzed in details to make the

final choice. The discarded method has few generic constraints and

too many specific constraints to the case previously solved such as:

constraint to impose the type of vessel and constraints on very

specific flow conditions. The retained adaptation method, i.e. AM 1, is

composed of the seven following successive adaptation operators:

AO 1 -Generic- Add a value in the domain TypeM (mobile type).

AO 2 -Generic-Add a type of stirring shaft (motor).

AO 3 -Generic- Add a constraint on position 1: focus on the

high vertical position as the most used.

AO 4 -Specific- Impose a flat bottom and a cylindrical vessel.

For this constraint, the designer had imposed to reuse equip-

ment already present in the workshop.

AO 5 -Generic- Add a constraint on the power of the motor.

Required constraint, because of the balance between the

mixture characteristics and the energy cost of the operation.

AO 6 -Specific- Add a constraint for non-selection of the type

screw for mobile agitation. This is often a very specific type for

some categories of fluids.

AO 7 -Specific- Remove the “Off-center” and “Tilted” values in

the domain of position horizontal position. Even if they provide

hydrodynamic conditions to prevent vortex, these two posi-

tions of the impeller increase dramatically the power of the

motor and increase the mechanical stress on the driving shaft.

Fig. 6. Selection of the AM method.



After the resolution of the CSP model corrected with the

retained adaptation methods, among the ten mixer configurations

found, none satisfies all the problem requirements. Consequently,

the adaptation must be refined through the activation of the

adaptation loop.

4.3. Adaptation loop

4.3.1. Loop description

The difficulty with “on line” knowledge acquisition is establish-

ing the least restrictive interactions with users while trying to get

enough information to learn knowledge. Moreover, the diagnosis

of the reasons of adaptation failure must be made. In the

approaches proposed in the literature, the only source of adapta-

tion failure considered comes from none adapted AO. But it is too

restrictive; we must also include the possibility that the adapta-

tion knowledge is missing in the knowledge base. Furthermore, in

our approach the expert is real and not virtual. With a virtual

expert, the system can easily diagnose and correct the data or the

reasons of the error, but this is not always the case with human

expert. Consequently, a more sophisticated user interaction would

be necessary to diagnose the causes of failure and to determine the

necessary repairs.

A process is triggered to correct the unsatisfactory solutions

with two possibilities:

1- The user modifies himself the model by changing or creating

AO, sub-process 4a in Fig. 4. The new set of AO becomes a new

AM. Note that these changes complement the AM(source).

Indeed, the new AM is generated on the basis of the AM(source)

used in step 2 or from a previous adaptation cycle. Then, the

user returns to step 3, to validate the new model. The loop is

activated as many times as necessary until a solution is

reached.

2- The user chooses to check each AO from the AM(source), sub-

process 4b on Fig. 4. The AO test procedure is activated to help

him establish the reasons of the failure. Indeed, it is not always

obvious to identify the AO that impede a suitable solution. This

procedure tests successively and separately the various AO, in

order to identify and correct the faulty operators with respect

to the problem requirements, Fig. 7.

If after testing and correcting the faulty AO, the solution remains

not suitable, the diagnosis then turns to a lack of adaptation knowl-

edge in the base. To refine the diagnosis and to try to identify the

missing knowledge, the user indicates the variables that do not meet

its requirements, then all the constitutive elements of the final model

(definition domain, AO, constraints) that involve these variables are

extracted and submitted to user analysis. At this stage, there are two

possibilities:

! A solution is found. The necessary adjustments are done with

expert knowledge or by trial and error methods if the expert

cannot precisely identify the reasons of the failure (or does not

have the necessary knowledge do remove it).
! The problem remains unsolved. The failure of adaptation could

be stored in specific base gathering all the adaptation failures

with the first development of diagnosis.

Test procedure:

1- Choose an AO.

2- Construct the corrected CSP model: retrieved model coupled

with the set of AO already tested and preserved.

3- Resolution of the corrected model.

4- The intermediate solution is submitted to the expert for

validation:

4-

1

The intermediate solution is validated ①, besides it meets

the problem requirements, then we can go to the retain

step of the CBR cycle ②.

4-

2

The intermediate solution is validated ①, but it does meet

the problem requirements, then go to step 1③ to choose

another AO and to update the AM.

4-

3

The intermediate solution is not validated ④, modification of

the tested operator until a solution is reached (a comment

can be added to explain the correction). If all the AO had been

tested, we must research the reason of the failure thanks to

the variables and elements extraction.

Besides interactivity and knowledge engineering effort reduc-

tion, the proposed adaptation loop has various new advantages:

(i) to identify the reasons of the failure, (ii) to evaluate the

consequences of some modifications on the remaining design

choices, and (iii) to propose a global resolution that encompasses

all the modifications rather than including them independently.

Indeed, the additional knowledge are made in sequence, but in

process engineering design, all the elements are strongly con-

nected, so we cannot afford to have such an approach. Instead, we

traditionally prefer a global resolution.

4.3.2. Case study: modification of the AM

Before the application of the adaptation method and the resolu-

tion of the CSP model, the expert starts with analysis of AM 1. He

decides to keep AO 1 and 2 because they extend the definition

domain of some variables, non-exhaustiveness in the definition of

the initial problem. Operator 3 is also kept because it represents a

generic constraint which is regularly applied in the research of mixer

configuration. The AO 4 is removed because it is too specific to the

initial problem and it is not valid in the current problem, especially

because the majority of vessels have a hemispherical bottom in order

to ease flow and drain. The constraint in AO 5 is retained; however

the maximum motor power has been shifted to a higher value to fit

with the faced problem. While they are specific operators, AO 6 and

7 are also maintained, especially the latter, which is consistent with

the constraint of AO 5. The former is always available, because screws

are used to mix liquid with very high viscosity such as paste. But in

the case study, the viscosity remains in the classical range of fluid

with low viscosity. To deal with the security constraint not included

Fig. 7. Test procedure.



yet, an additional constraint is added on the thermal device. Since

the problem requires a large heat evacuation through the vessel

walls, it is better to choose devices with double lagging or half casing

which are more effective for thermal withdrawal.

The resulting model is then solved providing six different mixer

configurations, but none of them fills all the needs. Consequently the

loop with the expert is activated. The test procedure enables to

identify AO 5 as a faulty adaptation operator, first by changing the

constraint on the power of the motor and then decrease the overly

optimistic value. The analysis of the result after this modification on

the motor energy saving shows that the whole remaining mixer

configurations have a hollow shaft that needs less energy for

rotating. Consequently, we can be more accurate on the constraint

and instead to limit the energy consumption, AO 5 is modified to

impose a hollow shaft for the variable “Type of Agitation Shaft”. This

example not only highlights the utility of the test procedure but also

demonstrates that it can also be useful to be more accurate on the

adaptation knowledge. However after testing the whole set of AO,

the proposed solutions do not meet all the initial requirements. In

this case we are faced with a lack of knowledge in the base; thus the

diagnosis procedure is now activated. Always with the goal to save

energy, elements focusing on the motor power and the type of shaft

are extracted as they are the main root causes of energy consump-

tion. With the detailed analysis of the remaining solutions and the

extracted elements, we remark that there exists the possibility of

having a shaft with bottom bearing. The latter generates a friction

inside the mixture and therefore a loss of energy. Moreover after a

deeper research on the presence of the bottom bearing, we also find

that the friction generates pollution of the liquid by small metal

chips. As the desired product will be used in pharmaceuticals, this

pollution must be removed. Consequently a constraint is added

specifying that bottom bearing cannot be used with the following

comment “bottom bearing generates pollution by metal chips and

increases energy consumption”. Finally the model is now validated

and it gives three possible mixer configurations, illustrated in Fig. 8,

that must be evaluated in the next design stage.
4.4. Case evaluation and storage

When a satisfactory solution is found, then an evaluation can be

made using the criteria already explained above, with the opportu-

nity to add comments on the AM. The goal of these comments is to

explain the context and objectives of the AM. For the moment, their

usefulness is limited to give indications to inform the user for a

possible reuse. But, as the number of AM linked to a case would go

increasing, we hope to include the comments in the similarity

measure to extract both βsource and AM(source). For this we will

propose a new similarity measure based on a semantic analysis.

Currently, the evaluation of the AM is done in step 5 of the process. It

is important to notice that the indicators are automatically calcu-

lated; therefore, they do not involve the user judgment that can be

imbued with subjectivity. The subjective vision that a person could

have on his own knowledge would affect his judgment and make the

knowledge more difficult to understand and reuse. The same remark

could be done on the quality of knowledge added.

The last step of the process, i.e. step 6, deals with the storage of

the new adaptation method and its association with the retrieved

model if relevant for the CBR system. As we distinguish specific and

generic AO, AM only composed of specific modifications, i.e. only

valid for the case study, are not automatically stored in the case base.

Inversely, AM that gathers more than one AO that enhances the

general knowledge is proposed for storage. Currently, this step is

relatively simple since it is the expert, during a maintenance session,

who chooses or not to include the adaptation method in the case

base. The expert can rely on the previous indicators to support his

choice. Even if in our approach we introduce some requirements in

order to facilitate the case base maintenance, this step deserves

further study, but it remains one of the perspectives of this work.

For the case study, the AM is stored with a comment that highlights

its two principal objectives: avoid mixture pollution and evacuate or

bring a large heat flux to the mixture. Even if in our example we only

evacuate heat, the same thermal subsystem can also be used to bring a

large amount of energy. This precision is important because it widens

the scope of the AM and expands the knowledge base. The AM is then

evaluated and stored in the base as it encompasses generic AO and adds

new knowledge to the KBS as explained before.

4.5. Discussion

The proposed methodology represents the foundation for an

interactive interface, which offers a good initial solution method

based on the already solved cases. In this work several evolutions

were introduced to present a general formalization of the adapta-

tion phase in the CBR cycle:

– The coupling of general and contextual knowledge, thanks to the

use of CSP for the description of case in the CBR. However,

Vareilles et al. (2012) have proposed using them not successively

but iteratively to reach a deeper coupling. We have not imple-

mented such an iterative approach because it cannot afford to

reach the other objectives of our KBS, i.e. adaptation knowledge

capitalization, and knowledge maintenance. In addition to the

sustainability of knowledge, the proposed approach makes it

easier to manage the consistency between the different design

choices. The major drawback of our approach is that it is not

completely generic because it relies on the assumption that the

problem must be formulated with a CSP model. Furthermore

even if the CSP model can be updated or it avoids restarting to

model the problem from scratch, the problem of the initial

model with its tremendous tasks for knowledge extraction and

formalization remains unsolved.

– With the implementation of the interaction loop, the online

expert knowledge acquisition reduces the knowledge engineering

effort compared to offline processes through a guided process to

Fig. 8. Three configurations for the mixer problem.



diagnose failure, to correct or ameliorate directly the proposed

solution. It also improves the relevance and confidence of the

knowledge stored. Moreover, this loop provides interactivity to

the system, which is not present in the adaptation methods

proposed in the literature. After each modification, the user can

run the model and can assess the consequences of his technolo-

gical choices on the possible solutions or simply on the definition

domains of the variables. It offers the ability to quickly detect

constraints that may lead to design failures.

– Supporting adaptation with a CSP approach fits very well with

CBR language and with design activities because specific require-

ments on a problem can be easily integrated to a generic model.

Unfortunately, representing a case as a CSP is not always possible

for all the industrial activities. Consequently, the whole method

cannot be used but some parts could be easily transferred to other

adaptation methods, for instance the loop and the AO. Indeed, the

only assumption with AO is that the adaption knowledge can be

decomposed into a finite set of elementary operators, which is

often the case regardless of the application scope of the CBR. It

just remains to make the AO description compatible with case

representation and with the adaptation knowledge acquisition.

Moreover, the advantage to decompose the adaptation method

into successive single adaptation operators is that it allows one to

have a detailed and deep knowledge acquisition. When an

adaptation failure occurs, it also facilitates the detection between

a faulty operator or the lack of adaption knowledge in the base.

– From the perspective to facilitate adaptation knowledge for-

malization and reuse, adaptation methods are linked to cases

stored in the case base. In consequence, adaptation is not

considered as a human process but rather as a process that

can be automatized. But the identification of the most relevant

adaptation method remains awkward despite criteria to sup-

port the choice. Indeed the criteria focus on the performances

of the adapted model and not on its claimed reasons of

existence or its objectives.

– The approach with adaptation operators could ameliorate the

maintenance step. Currently maintenance is often considered

as a human process. With our approach it can be semi-

automatized. Indeed as we distinguish specific and general

operators in the adaptation method, only the latter are con-

sidered in the maintenance step. Then when an adaptation

operator is common to several adaptation methods, it could be

extracted and proposed to the expert for validation and to

eventually integrate it in the initial CSP model. The perfor-

mance model indicators could also be used to maintain the CSP

model. Another important component of the maintenance

appears when a number of adaptation methods are connected

to one case. In this configuration, the initial CSP no longer

meets the users requirements; thus the CSP model must be

improved. Another question arises: should we divide the case

in several cases or not? All these points are open questions

because the maintenance step is still a perspective of this work.

5. Knowledge reusability

In KBS, adding knowledge raises inevitably the question of the

quality and usefulness of the adaptation knowledge acquired.

Concerning the former, it was measured through the previous

four indicators and ensured thanks to the case base maintenance.

But nothing is done to demonstrate that this acquired knowledge

is reusable and it improves the competency of the KBS. In this

section we want to demonstrate this through a series of tests.

Unfortunately, we are aware that for each subsection the number

of problems tested is not sufficient to draw relevant conclusions,

but once again in preliminary design it is difficult to have a large

number of target problems. However, these comparative tests can

give first indications of knowledge utility.

As the goal of this part is to demonstrate the adaptation

knowledge reusability, we have imagined three different tests.

The first one puts in highlight the influence of the quality of the

knowledge acquired on its reuse and on the efficiency of the CBR

system to solve new problems. The second series of tests is to

solve problems twice: a first time without using the knowledge

acquired and the second time by using the knowledge acquired.

The goal is to prove that the way to manage this knowledge allows

one to easily identify, extract and reuse it, but also to demonstrate

that the CBR system raises its capacity to solve problem and its

knowledge quality after each new solving episode (if the knowl-

edge is stored in the memory). The last series of tests is to show

the benefit of knowledge maintenance and the relevance of the

criteria retained to extract AM.

5.1. Global test

The first test consists in measuring the number of tries necessary

to solve the problem. Twenty-five problems were solved by the same

user. The retained indicator measures the number of modifications of

the global model (βsourceþAM(source)) necessary to reach a satis-

factory solution. We do not retain the number of time the adaptation

loop is activated because during one loop activation several AO can

be modified. In the adaptation loop, each single adaptation operation

is counted as one iteration, i.e. each unit modification of an AO or

each new AO added. We also measure the failure rate.

The results are presented in Fig. 9, where the number of

problems solved is plotted against the number of iterations

needed (treated by ranges). Inside each range of iterations we

distinguish four classes of AM on the basis of global criterion (GC)

calculated with the four evaluation metrics:

GC ¼
1

P4
1 wi

w1nParsimonyþw2nAccuracyþw3nCommentsð

þw4nCyclomaticÞ ð2Þ

The global criterion ranges from 1 for the most relevant AM to

0 for the worst AM. For the study we use the same weight for each

metrics. Indeed, we try to vary the weights and to make a

sensibility analysis to see the relative importance of each criterion

but we do not obtain significant results, perhaps because of the

low number of problems tested.

The first comment in Fig. 9 is the relatively low rate of failure

(12%) even if it seems to be slightly overestimated because of the

2

3

2

1

1 3

1 1

2

1

2

1

1

2

2

0

1

2

3

4

5

6

7

8

Less Than 5 Between 5-10 Between 10-15 Greater than 15 Failure

N
u

m
b

e
r 

o
f 

p
ro

b
le

m
s

 t
e

s
te

d

Number of iterations

Class 4 (range of global criteria [0,5; 0,7])

Class 3 (range of global criteria [0,7; 0,8])

Class 2 (range of global criteria [0,8; 0,9])

Class 1 (range of global criteria [0,9; 1])

Fig. 9. Global test results.



proximity of the problems treated. Indeed, during the retrieval phase

the lower value of the similarity function for the 25 problems is 0.68

(in our CBR the similarity function ranges between 0 and 1). However

the low failure rate indicates that the adaptation knowledge is

reused. Another remark is that the quality of the AM, measured

with the global criteria, has a strong influence on the number of

iterations necessary to adapt a case. The greater the quality is, the

lower the number of iterations. The level of expertise of the user may

also have an influence on the number of iterations but we cannot

realize this test as we only have two levels of expertise.

In Fig. 9, two specific results focus our attention. In the first

column we have a test with a class 4 AM but it requires less than

5 iterations to be adapted. When the AM is reviewed in details, it

appears that it has a low global criterion because it is composed of

numerous AO and most of them are specific. But one specific and

one generic AO were well formulated and had great relevance for

the faced problem. This raises the question of the granularity of

the analysis. Currently, we modify AM but it will be more efficient

to use AO. This would allow one to reuse AO from different AM and

thus to build a method more dedicated to the adaptation problem

rather than modifying an existing AM. This point is discussed in

the conclusion. The second noteworthy test is in the subset of

failure. There is a class 2 problem in this subset, which leads to the

conclusion that when the adaptation knowledge is missing, the

quality of the method does not have a real impact on the failure. It

is important to notice that thanks to the diagnosis procedure we

avoid the failure for two problems tested.

5.2. Comparative tests

The purpose is to test the utility of the learned adaptation knowl-

edge. In this test a series of very similar problems were successively

solved storing every time the adaptation knowledge. For each new

problem addressed, the adaptation knowledge of the previous resolu-

tions is available. In the second time, the same series of problem is

solved again but without using the adaptation knowledge previously

acquired. Here again the test indicator is the number of iterations, i.e.

the number of corrections of the global model. For this test, twelve

problems dealing with a problem of mixer configuration were treated.

Indeed, to be sure that the acquired knowledge will be potentially

reused we need to solve similar problems.

Fig. 10 illustrate the results for both series of tests. First by

comparing the two figures we can conclude that the acquired knowl-

edge is reused because the number of iterations for solving a problem

decreases when it is stored. Indeed the mean number of iterations

drops from 11 to 9. The second observation is that the overall quality

of the knowledge acquired is enhanced. We can notice that there are

more AM in classes 1 and 2 and less in the last two classes. The

conclusion of this test is that the purposes of the methodology are

reached, namely the reuse of the adaptation knowledge acquired, the

increase of the competence of the KBS through the successive

resolutions, and the reduced knowledge engineering effort as the

new knowledge added can immediately be available. Despite the

quality and usefulness ameliorations, it still remains missing adapta-

tion knowledge because there is always a failure.

5.3. Local tests

The local tests are often realized except for one strategy. It consists

of a first resolution of a series of problems by storing the adaptation

knowledge necessary but without storing the solution. Then the same

problems are solved again to verify if the adaptation knowledge

acquired during the first resolution is exploited. In our approach, this

strategy cannot be applied in its original form because the solution

part of our case encompasses the adaptation knowledge and it cannot

be dissociated. Consequently, this two-step method is used to test the

relevance of the four criteria retained to evaluate the AM. A series of

twenty-four problems was solved and once the AM is established

they were stored and evaluated (in fact we use the same series of

problems as in subsection 5.1, but for one problem the AM is not

stored because it does not improve the competency of the KBS). Then

the same series of problems was solved again to see the position of

the AM in the Pareto front. First, after the first resolution, the AM

were stored as they were created, i.e. without maintenance. Fig. 11

shows the rank of the AM in the Pareto front during the second

resolution. The set of AM linked to a case is ranked according the

decreasing values of the global score calculated with formula (2). The

AM of 17 problems are classified in the first three methods and 20 in

the first four. The proposed criteria to evaluate the quality of AM and

the tool to support the AM selection seem relevant even if some

problems remain for which the acquired knowledge is accessible with

difficulty. As the AM are found mainly in the first ranks, this also

demonstrates the usefulness of the acquired knowledge.

The same series of tests was realized but after performing a

maintenance operation on the AM and their AO. Indeed, as we have

shown in the case study corrections on AO or AM can improve the

relevance of the method and enlarge their scope. As this main-

tenance is done by an expert, it results in an increase of the global

score. Diagram 2 in Fig. 11 gives the results of this second test. We

can clearly see the benefit of the maintenance step on the quality and

the usefulness of the adaptation knowledge acquired.

6. Conclusions

In this article, we first presented a new methodology for the

adaptation phase in CBR. This methodology is more focused on
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design and more particularly in the process engineering domain,

but some parts of this methodology can be easily transferred to

other domains and activities. The preliminary process design is a

complex domain where past experiences are often reused for

solving new problems. Among the possible methods for knowl-

edge capitalization and reuse, CBR is an effective approach that

finds a solution by retrieving past experiences and CSP methods

have been applied in the resolution of complex combinatorial

problems in the domains of configuration and design.

The primary motivations for combining these two approaches

in process design are:

! To provide an excellent representation for a problem with the

CSP formalism that facilitates its treatment by the CBR, includ-

ing retrieval, adaptation and maintenance phases; meanwhile,

it enables combining of two categories of knowledge: contex-

tual and general.
! To use the powerful CSP algorithms for solving very complex

problems.
! To increase the efficiency of the CSP models by reusing the past

experiences especially in the cases where modeling is difficult

or almost impossible to obtain.

The major contributions of this article, we believe, are (i) the

modification of the adaptation loop which adds interactivity in

CBR and permits one to acquire online expert knowledge to reduce

the knowledge engineering effort by a timely solicitation, (ii) the

decomposition of the adaption knowledge into elementary knowl-

edge containers to facilitate knowledge elicitation, reuse and

maintenance, (iii) a decision support system to search and identify

the relevant adaptation knowledge thanks to the proposition of

evaluation criteria, and (iv) a diagnosis process to identify the root

cause of failures. Some tests were also performed to evaluate the

quality and the usefulness of the adaptation knowledge acquired.

Indeed in numerous CBR systems, new knowledge is acquired to

improve the skills of the system but nothing was done to establish

the relevance of this new added knowledge.

In the future, we will pay attention to these five main perspectives:

! The similarity measurement can be improved by introducing

the AM retrieval in the calculation as explained in Section 4.4.

This can be done thanks to the proposal of a similarity measure

relying on a semantic analysis.
! The way the adaptation knowledge would be managed and mai-

ntained is still an open question. Even if case base maintenance

requirements were anticipated and introduced in the methodol-

ogy, this step is perfectible. For instance, it could be improved

with machine learning approach in order to extract new

knowledge from the adaptation methods encompassed in the

case base.
! Currently the reuse of the adaptation knowledge is done at the

level of the AM. We can imagine going further, rather than

using existing AM we can build a specific AM to the problem

addressed. As at the deeper level the knowledge container is

the AO, we could extract AO from different AM and thus

elaborate a more targeted AM. The difficulty is not the research

and extraction of suitable AO but the construction of a coherent

AM. Indeed, the grouping of AO belonging to different AM may

lead to incoherent and unusable AM and would generate

adaptation failure. The way to ensure model coherence is not

obvious and needs further development.
! Another perspective concerns the failure. As explained before,

when an adaption failure occurs the problem is stored in a

dedicated case base. The goal would be to exploit these failures

to raise the issue at the stage of research and to build a link

with Conflict Based Approach tools. We can also include this

information at the early steps of the CBR, for example at step 1a

or 2 of our cycle to alert the user that the problem cannot be

solved with the current knowledge stored in the base.

The phase of tests can be continued for instance by increasing

the number of problems treated in the series or by integrating the

level of expertise of the user in the parameters to test.

Annex 1. Input data for problem description

Feature Value Type Example

Mixture

description

Phase State Semantic Liquid,

Liquid–

Solid…

Phase

description

Liquid Density Numerical 1000 kg/m3

Viscosity Numerical

or

semantic

1 Pa/s, high…

Type of fluid Semantic Newtonian…

Solid Density Numerical 2000 kg/m3

Wettability Semantic High,

Medium, Low

Solubility Numerical

or

Semantic

300 g/L,

Low…

Mean

Diameter

Numerical 10 mm

Gas Flow rate Numerical 10 kg/s

Solubility Numerical

or

Semantic

200 g/L, High

Pressure Numerical

or

Semantic

1 Pa, Low

Inert phase Semantic Yes or no

Type of

Operation

Type of

application

Semantic Liquid-Gas

Physical

Characteristic

Semantic Suspension,

Dispersion

Chemical

Characteristic

Semantic Dissolution,

Absorption,

Fermentation

Hydrodynamics

Characteristics

Shear Semantic High,

Medium, Low
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Turbulence Semantic High,

Medium, Low

Pumping Semantic High,

Medium, Low

Thermal Device Thermal Numerical

or

Semantic

10 KW, High,

Medium…

Annex 2. Variables and Definition Domains

See Annex Table A1.
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Table A1

Variables and domains for a mixer.

Variables Domains

Vessel Cylindrical flat bottom,

Cylindrical conical bottom,

Hemispherical, square…

Baffle None, upper part, lower part,

all the length…

Size of the

baffle

Range of real number

depending on the two

previous variables

Thermal device None, Heating coil, Double

lagging, Half casing, Half

casing with coil…

Size of the

thermal

devices

Range of real number

depending of the previous

variable

Type Impellers Marine propeller, Hydrofoils,

flat blades, pitched blades,

Rushton turbine…

Vertical

position

Vertical High, Vertical low,

Lateral

Horizontal

position

Off center, Centered, Tilted

Motors Power, Speed

Shaft Solid Shaft, Hollow Shaft,

Shaft with bottom bearing
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