1,235 research outputs found

    Expressive Stream Reasoning with Laser

    Full text link
    An increasing number of use cases require a timely extraction of non-trivial knowledge from semantically annotated data streams, especially on the Web and for the Internet of Things (IoT). Often, this extraction requires expressive reasoning, which is challenging to compute on large streams. We propose Laser, a new reasoner that supports a pragmatic, non-trivial fragment of the logic LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser implements a novel evaluation procedure which annotates formulae to avoid the re-computation of duplicates at multiple time points. This procedure, combined with a judicious implementation of the LARS operators, is responsible for significantly better runtimes than the ones of other state-of-the-art systems like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP solver Clingo. This enables the application of expressive logic-based reasoning to large streams and opens the door to a wider range of stream reasoning use cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201

    Vibrational modes of circular free plates under tension

    Full text link
    The vibrational frequencies of a plate under tension are given by the eigenvalues ω\omega of the equation Δ2uτΔu=ωu\Delta^2u-\tau\Delta u=\omega u. This paper determines the eigenfunctions and eigenvalues of this bi-Laplace problem on the ball under natural (free) boundary conditions. In particular, the fundamental modes --- the eigenfunctions of the lowest nonzero eigenvalue --- are identified and found to have simple angular dependence.Comment: 17 pages. To be submitted for publication shortly

    Characterization of hexabundles: Initial results

    Full text link
    New multi-core imaging fibre bundles -- hexabundles -- being developed at the University of Sydney will provide simultaneous integral field spectroscopy for hundreds of celestial sources across a wide angular field. These are a natural progression from the use of single fibres in existing galaxy surveys. Hexabundles will allow us to address fundamental questions in astronomy without the biases introduced by a fixed entrance aperture. We have begun to consider instrument concepts that exploit hundreds of hexabundles over the widest possible field of view. To this end, we have compared the performance of a 61-core fully-fused hexabundle and 5 lightly-fused bundles with 7 cores each. All fibres in the bundles have 100 micron cores. In the fully-fused bundle, the cores are distorted from a circular shape in order to achieve a higher fill fraction. The lightly-fused bundles have circular cores and five different cladding thicknesses which affect the fill fraction. We compare the optical performance of all 6 bundles and find that the advantage of smaller interstitial holes (higher fill fraction) is outweighed by the increase in modal coupling, cross-talk and the poor optical performance caused by the deformation of the fibre cores. Uniformly high throughput and low cross-talk are essential for imaging faint astronomical targets with sufficient resolution to disentangle the dynamical structure. Devices already under development will have between 100 and 200 lightly-fused cores, although larger formats are feasible. The light-weight packaging of hexabundles is sufficiently flexible to allow existing robotic positioners to make use of them.Comment: Accepted for publication in MNRAS. See also a complimentary paper on the development of hexabundles - Bland-Hawthorn et al. 2011, Optics Express, vol. 19, p. 2649 (http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-3-2649

    Estimation of absorption line indices of early-type galaxies using colours

    Full text link
    Context. Absorption line indices are widely used to determine the stellar population parameters such as age and metallicity of galaxies, but it is not easy to obtain the line indices of some distant galaxies that have colours available. Aims. This paper investigates the correlations between absorption line indices and colours. Methods. A few statistical fitting methods are mainly used, via both the observational data of Sloan Digital Sky Survey and a widely used theoretical stellar population model. Results. Some correlations between widely used absorption line indices and ugriz colours are found from both observational data of early-type galaxies and a theoretical simple stellar population model. In particular, good correlations between colours and widely used absorption line indices such as Dn(4000), HgammaA, HgammaF, HdeltaA, Mg1, Mg2, and Mgb, are shown in this paper. Conclusions. Some important absorption line indices of early-type galaxies can be estimated from their colours using correlations between absorption line indices and colours. For example, age-sensitive absorption line indices can be estimated from (u-r) or (g-r) colours and metallicity-sensitive ones from (u - z) or (g - z). This is useful for studying the stellar populations of distant galaxies, especially for statistical investigations.Comment: 9 pages, 21 figures, will be shown in A&

    Challenges in Stellar Population Studies

    Full text link
    The stellar populations of galaxies contain a wealth of detailed information. From the youngest, most massive stars, to almost invisible remnants, the history of star formation is encoded in the stars that make up a galaxy. Extracting some, or all, of this informationhas long been a goal of stellar population studies. This was achieved in the last couple of decades and it is now a routine task, which forms a crucial ingredient in much of observational galaxy evolution, from our Galaxy out to the most distant systems found. In many of these domains we are now limited not by sample size, but by systematic uncertainties and this will increasingly be the case in the future. The aim of this review is to outline the challenges faced by stellar population studies in the coming decade within the context of upcoming observational facilities. I will highlight the need to better understand the near-IR spectral range and outline the difficulties presented by less well understood phases of stellar evolution such as thermally pulsing AGB stars, horizontal branch stars and the very first stars. The influence of rotation and binarity on stellar population modeling is also briefly discussed.Comment: Plenary review talk at IAU GA in Rio de Janeiro to be published in the proceedings of IAU Symposium 262. Movies and talk slides available at http://www.strw.leidenuniv.nl/~jarle/IAU0

    Predicting spectral features in galaxy spectra from broad-band photometry

    Full text link
    We explore the prospects of predicting emission line features present in galaxy spectra given broad-band photometry alone. There is a general consent that colours, and spectral features, most notably the 4000 A break, can predict many properties of galaxies, including star formation rates and hence they could infer some of the line properties. We argue that these techniques have great prospects in helping us understand line emission in extragalactic objects and might speed up future galaxy redshift surveys if they are to target emission line objects only. We use two independent methods, Artifical Neural Neworks (based on the ANNz code) and Locally Weighted Regression (LWR), to retrieve correlations present in the colour N-dimensional space and to predict the equivalent widths present in the corresponding spectra. We also investigate how well it is possible to separate galaxies with and without lines from broad band photometry only. We find, unsurprisingly, that recombination lines can be well predicted by galaxy colours. However, among collisional lines some can and some cannot be predicted well from galaxy colours alone, without any further redshift information. We also use our techniques to estimate how much information contained in spectral diagnostic diagrams can be recovered from broad-band photometry alone. We find that it is possible to classify AGN and star formation objects relatively well using colours only. We suggest that this technique could be used to considerably improve redshift surveys such as the upcoming FMOS survey and the planned WFMOS survey.Comment: 10 pages 7 figures summitted to MNRA

    Multifragmentation of non-spherical nuclei

    Get PDF
    The shape influence of decaying thermalized source on various characteristics of multifragmentation as well as its interplay with effects of angular momentum and collective expansion are first studied and the most pertinent variables are proposed. The analysis is based on the extension of the statistical microcanonical multifragmentation model.Comment: 5 pages, 4 figure

    VIMOS-IFU survey of z~0.2 massive galaxy clusters. I. Observations of the strong lensing cluster Abell 2667

    Full text link
    (abridged) We present extensive multi-color imaging and low resolution VIMOS Integral Field Unit spectroscopic observations of the X-ray luminous cluster Abell 2667 (z=0.233). An extremely bright giant gravitational arc (z=1.0334) is easily identified as part of a triple image system and other fainter multiple images are also revealed by the HST-WFPC2 images. The VIMOS-IFU observations cover a field of view of 54'' x 54'' and enable us to determine the redshift of all galaxies down to V=22.5. Furthermore, redshifts could be identified for some sources down to V=23.2. In particular we identify 21 cluster members in the cluster inner region, from which we derive a velocity dispersion of \sigma=960 km/s, corresponding to a total mass of 7.1 x 10^{13} solar masses within a 110 kpc radius. Using the multiple images constraints and priors on the mass distribution of cluster galaxy halos we construct a detailed lensing mass model leading to a total mass of 2.9 x 10^{13} solar masses within the Einstein radius (16 arcsec). The lensing mass and dynamical mass are in good agreement although the dynamical one is much less accurate. Comparing these measurements with published X-ray analysis, is however less conclusive. Although the X-ray temperature matches the dynamical and lensing estimates, the published NFW mass model derived from the X-ray measurement with its small concentration of c ~3 can not account for the large Einstein radius observed in this cluster. A larger concentration of ~6 would however match the strong lensing measurements. These results are likely reflecting the complex structure of the cluster mass distribution, underlying the importance of panchromatic studies from small to large scale in order to better understand cluster physics.Comment: 14 pages, 12 figures. Submitted to A

    SDSSJ150634.27+013331.6: the second compact elliptical galaxy in the NGC5846 group

    Full text link
    We report the discovery of the second compact elliptical (cE) galaxy SDSSJ150634.27+013331.6 in the nearby NGC5846 group by the Virtual Observatory (VO) workflow . This object (M_B = -15.98 mag, R_e = 0.24 kpc) becomes the fifth cE where the spatially-resolved kinematics and stellar populations can be obtained. We used archival HST WFPC2 images to demonstrate that its light profile has a two-component structure, and integrated photometry from GALEX, SDSS, UKIDSS, and Spitzer to build the multi-wavelength SED to constraint the star formation history (SFH). We observed this galaxy with the PMAS IFU spectrograph at the Calar-Alto 3.5m telescope and obtained two-dimensional maps of its kinematics and stellar population properties using the full-spectral fitting technique. Its structural, dynamical and stellar population properties suggest that it had a massive progenitor heavily tidally stripped by NGC5846.Comment: 5 pages, 4 figure, 1 table. Accepted to MNRAS Letter

    Rationale, description and baseline findings of a community-based prospective cohort study of kidney function amongst the young rural population of Northwest Nicaragua.

    Get PDF
    BACKGROUND: An epidemic of Mesoamerican Nephropathy (MeN) is killing thousands of agricultural workers along the Pacific coast of Central America, but the natural history and aetiology of the disease remain poorly understood. We have recently commenced a community-based longitudinal study to investigate Chronic Kidney Disease (CKD) in Nicaragua. Although logistically challenging, study designs of this type have the potential to provide important insights that other study designs cannot. In this paper we discuss the rationale for conducting this study and summarize the findings of the baseline visit. METHODS: The baseline visit of the community-based cohort study was conducted in 9 communities in the North Western Nicaragua in October and November 2014. All of the young men, and a random sample of young women (aged 18-30) without a pre-existing diagnosis of CKD were invited to participate. Glomerular filtration rate (eGFR) was estimated with CKD-EPI equation, along with clinical measurements, questionnaires, biological and environmental samples to evaluate participants' exposures to proposed risk factors for MeN. RESULTS: We identified 520 young adults (286 males and 234 females) in the 9 different communities. Of these, 16 males with self-reported CKD and 5 females with diagnoses of either diabetes or hypertension were excluded from the study population. All remaining 270 men and 90 women, selected at random, were then invited to participate in the study; 350 (97%) agreed to participate. At baseline, 29 (11%) men and 1 (1%) woman had an eGFR <90 mL/min/1.73 m2. CONCLUSION: Conducting a community based study of this type requires active the involvement of communities and commitment from local leaders. Furthermore, a research team with strong links to the area and broad understanding of the context of the problem being studied is essential. The key findings will arise from follow-up, but it is striking that 5% of males under aged 30 had to be excluded because of pre-existing kidney disease, and that despite doing so 11% of males had an eGFR <90 mL/min/1.73 m2 at baseline
    corecore