195 research outputs found

    A comparison between the APACHE II and Charlson Index Score for predicting hospital mortality in critically ill patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Risk adjustment and mortality prediction in studies of critical care are usually performed using acuity of illness scores, such as Acute Physiology and Chronic Health Evaluation II (APACHE II), which emphasize physiological derangement. Common risk adjustment systems used in administrative datasets, like the Charlson index, are entirely based on the presence of co-morbid illnesses. The purpose of this study was to compare the discriminative ability of the Charlson index to the APACHE II in predicting hospital mortality in adult multisystem ICU patients.</p> <p>Methods</p> <p>This was a population-based cohort design. The study sample consisted of adult (>17 years of age) residents of the Calgary Health Region admitted to a multisystem ICU between April 2002 and March 2004. Clinical data were collected prospectively and linked to hospital outcome data. Multiple regression analyses were used to compare the performance of APACHE II and the Charlson index.</p> <p>Results</p> <p>The Charlson index was a poor predictor of mortality (C = 0.626). There was minimal difference between a baseline model containing age, sex and acute physiology score (C = 0.74) and models containing either chronic health points (C = 0.76) or Charlson index variations (C = 0.75, 0.76, 0.77). No important improvement in prediction occurred when the Charlson index was added to the full APACHE II model (C = 0.808 to C = 0.813).</p> <p>Conclusion</p> <p>The Charlson index does not perform as well as the APACHE II in predicting hospital mortality in ICU patients. However, when acuity of illness scores are unavailable or are not recorded in a standard way, the Charlson index might be considered as an alternative method of risk adjustment and therefore facilitate comparisons between intensive care units.</p

    Ferritins: furnishing proteins with iron

    Get PDF
    Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins

    Impact of early enteral versus parenteral nutrition on mortality in patients requiring mechanical ventilation and catecholamines: study protocol for a randomized controlled trial (NUTRIREA-2)

    Get PDF
    BACKGROUND: Nutritional support is crucial to the management of patients receiving invasive mechanical ventilation (IMV) and the most commonly prescribed treatment in intensive care units (ICUs). International guidelines consistently indicate that enteral nutrition (EN) should be preferred over parenteral nutrition (PN) whenever possible and started as early as possible. However, no adequately designed study has evaluated whether a specific nutritional modality is associated with decreased mortality. The primary goal of this trial is to assess the hypothesis that early first-line EN, as compared to early first-line PN, decreases day 28 all-cause mortality in patients receiving IMV and vasoactive drugs for shock. METHODS/DESIGN: The NUTRIREA-2 study is a multicenter, open-label, parallel-group, randomized controlled trial comparing early PN versus early EN in critically ill patients requiring IMV for an expected duration of at least 48 hours, combined with vasoactive drugs, for shock. Patients will be allocated at random to first-line PN for at least 72 hours or to first-line EN. In both groups, nutritional support will be started within 24 hours after IMV initiation. Calorie targets will be 20 to 25 kcal/kg/day during the first week, then 25 to 30 kcal/kg/day thereafter. Patients receiving PN may be switched to EN after at least 72 hours in the event of shock resolution (no vasoactive drugs for 24 consecutive hours and arterial lactic acid level below 2 mmol/L). On day 7, all patients receiving PN and having no contraindications to EN will be switched to EN. In both groups, supplemental PN may be added to EN after day 7 in patients with persistent intolerance to EN and inadequate calorie intake. We plan to recruit 2,854 patients at 44 participating ICUs. DISCUSSION: The NUTRIREA-2 study is the first large randomized controlled trial designed to assess the hypothesis that early EN improves survival compared to early PN in ICU patients. Enrollment started on 22 March 2013 and is expected to end in November 2015. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01802099 (registered 27 February 2013)

    Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken

    Get PDF
    Background: The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues. Results: Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development. Conclusion: Expression profiles obtained from public RNA-seq datasets - despite being generated by different laboratories using different methodologies - can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Current concept of abdominal sepsis : WSES position paper

    Get PDF
    Peer reviewe

    Current concept of abdominal sepsis: WSES position paper

    Full text link
    corecore