331 research outputs found

    Dynamic critical behavior of the classical anisotropic BCC Heisenberg antiferromagnet

    Full text link
    Using a recently implemented integration method [Krech et. al.] based on an iterative second-order Suzuki-Trotter decomposition scheme, we have performed spin dynamics simulations to study the critical dynamics of the BCC Heisenberg antiferromagnet with uniaxial anisotropy. This technique allowed us to probe the narrow asymptotic critical region of the model and estimate the dynamic critical exponent z=2.25±0.08z=2.25 \pm 0.08. Comparisons with competing theories and experimental results are presented.Comment: Latex, 3 pages, 5 figure

    Multi-agent statistical discriminative sub-trajectory mining and an application to NBA basketball

    Full text link
    Improvements in tracking technology through optical and computer vision systems have enabled a greater understanding of the movement-based behaviour of multiple agents, including in team sports. In this study, a Multi-Agent Statistically Discriminative Sub-Trajectory Mining (MA-Stat-DSM) method is proposed that takes a set of binary-labelled agent trajectory matrices as input and incorporates Hausdorff distance to identify sub-matrices that statistically significantly discriminate between the two groups of labelled trajectory matrices. Utilizing 2015/16 SportVU NBA tracking data, agent trajectory matrices representing attacks consisting of the trajectories of five agents (the ball, shooter, last passer, shooter defender, and last passer defender), were truncated to correspond to the time interval following the receipt of the ball by the last passer, and labelled as effective or ineffective based on a definition of attack effectiveness that we devise in the current study. After identifying appropriate parameters for MA-Stat-DSM by iteratively applying it to all matches involving the two top- and two bottom-placed teams from the 2015/16 NBA season, the method was then applied to selected matches and could identify and visualize the portions of plays, e.g., involving passing, on-, and/or off-the-ball movements, which were most relevant in rendering attacks effective or ineffective

    2D Kinematics and Physical Properties of z~3 Star-Forming Galaxies

    Full text link
    We present results from a study of the kinematic structure of star-forming galaxies at redshift z~3 selected in the VVDS, using integral-field spectroscopy of rest-frame optical nebular emission lines, in combination with rest-frame UV spectroscopy, ground-based optical/near-IR and Spitzer photometry. We also constrain the underlying stellar populations to address the evolutionary status of these galaxies. We infer the kinematic properties of four galaxies: VVDS-20298666, VVDS-020297772, VVDS-20463884 and VVDS-20335183 with redshifts z = 3.2917, 3.2878, 3.2776, and 3.7062, respectively. While VVDS-20463884 presents an irregular velocity field with a peak in the local velocity dispersion of the galaxy shifted from the centre of the galaxy, VVDS-20298666 has a well-resolved gradient in velocity over a distance of ~4.5 kpc with a peak-to-peak amplitude of v = 91 km/s . We discovered that the nearby galaxy, VVDS-020297772 (which shows traces of AGN activity), is in fact a companion at a similar redshift with a projected separated of 12 kpc. In contrast, the velocity field of VVDS-020335183 seems more consistent with a merger on a rotating disk. However, all of the objects have a high local velocity dispersion (sigma ~ 60-70 km/s), which gives v/sigma < 1. It is unlikely that these galaxies are dynamically cold rotating disk of ionized gas.Comment: 14 pages and 16 figure

    Spitzer Imaging of i'-drop Galaxies: Old Stars at z~6

    Get PDF
    We present new evidence for mature stellar populations with ages >100Myr in massive galaxies (M_stellar>10^10M_sun) seen at a time when the Universe was less than 1Gyr old. We analyse the prominent detections of two z~6 star-forming galaxies (SBM03#1 & #3) made at wavelengths corresponding to the rest-frame optical using the IRAC camera onboard the Spitzer Space Telescope. We had previously identified these galaxies in HST/ACS GOODS images of Chandra Deep Field South through the "i-drop" Lyman break technique, and subsequently confirmed spectroscopically with the Keck telescope. The new Spitzer photometry reveals significant Balmer/4000Ang discontinuities, indicative of dominant stellar populations with ages >100Myr. Fitting a range of population synthesis models (for normal initial mass functions) to the HST/Spitzer photometry yields ages of 250-650Myr and implied formation redshifts z~7.5-13.5 in presently-accepted world models. Remarkably, our sources have best-fit stellar masses of 1.3-3.8x10^10M_sun (95% confidence) assuming a Salpeter initial mass function. This indicates that at least some galaxies with stellar masses >20% of those of a present-day L* galaxy had already assembled within the first Gyr after the Big Bang. We also deduce that the past average star formation rate must be comparable to the current observed rate (SFR_UV~5-30M_sun/yr), suggesting that there may have been more vigorous episodes of star formation in such systems at higher redshifts. Although a small sample, limited primarily by Spitzer's detection efficiency, our result lends support to the hypothesis advocated in our earlier analyses of the Ultra Deep Field and GOODS HST/ACS data. The presence of established systems at z~6 suggests long-lived sources at earlier epochs (z>7) played a key role in reionizing the Universe.Comment: Accepted for publication in MNRAS (minor corrections made

    The Comoving Infrared Luminosity Density: Domination of Cold Galaxies across 0<z<1

    Get PDF
    In this paper we examine the contribution of galaxies with different infrared (IR) spectral energy distributions (SEDs) to the comoving infrared luminosity density, a proxy for the comoving star formation rate (SFR) density. We characterise galaxies as having either a cold or hot IR SED depending upon whether the rest-frame wavelength of their peak IR energy output is above or below 90um. Our work is based on a far-IR selected sample both in the local Universe and at high redshift, the former consisting of IRAS 60um-selected galaxies at z<0.07 and the latter of Spitzer 70um selected galaxies across 0.1<z<1. We find that the total IR luminosity densities for each redshift/luminosity bin agree well with results derived from other deep mid/far-IR surveys. At z<0.07 we observe the previously known results: that moderate luminosity galaxies (L_IR<10^11 Lsun) dominate the total luminosity density and that the fraction of cold galaxies decreases with increasing luminosity, becoming negligible at the highest luminosities. Conversely, above z=0.1 we find that luminous IR galaxies (L_IR>10^11 Lsun), the majority of which are cold, dominate the IR luminosity density. We therefore infer that cold galaxies dominate the IR luminosity density across the whole 0<z<1 range, hence appear to be the main driver behind the increase in SFR density up to z~1 whereas local luminous galaxies are not, on the whole, representative of the high redshift population.Comment: 5 pages, 3 figures, accepted for publication in MNRA

    ZEN2: A narrow J-band search for z~9 Lya emitting galaxies directed towards three lensing clusters

    Get PDF
    We present the results of a continuing survey to detect Lya emitting galaxies at redshifts z~9: the ZEN ("z equals nine'') survey. We have obtained deep VLT/ISAAC observations in the narrow J-band filter NB119 directed towards three massive lensing clusters: Abell clusters 1689, 1835, and 114. The foreground clusters provide a magnified view of the distant universe and permit a sensitive test for the presence of very high-redshift galaxies. We search for z~9 Lya emitting galaxies displaying a significant narrow-band excess relative to accompanying J-band observations that remain undetected in HST/ACS optical images of each field. No sources consistent with this criterion are detected above the unlensed 90% point-source flux limit of the narrow-band image, F_NB=3.7e-18 ergs/s/cm2. To date, the total coverage of the ZEN survey has sampled a volume at z~9 of approximately 1700 co-moving Mpc3 to a Lya emission luminosity of 1e43 erg/s. We conclude by considering the prospects for detecting z~9 Lya emitting galaxies in light of both observed galaxy properties at z7.Comment: 7 pages, MNRAS accepte

    Hot Cores : Probes of High-Redshift Galaxies

    Get PDF
    The very high rates of second generation star formation detected and inferred in high redshift objects should be accompanied by intense millimetre-wave emission from hot core molecules. We calculate the molecular abundances likely to arise in hot cores associated with massive star formation at high redshift, using several independent models of metallicity in the early Universe. If the number of hot cores exceeds that in the Milky Way Galaxy by a factor of at least one thousand, then a wide range of molecules in high redshift hot cores should have detectable emission. It should be possible to distinguish between independent models for the production of metals and hence hot core molecules should be useful probes of star formation at high redshift.Comment: Updated to correspond to version accepted by MNRA

    Magnetic Phase Diagram of the Ferromagnetically Stacked Triangular Ising Antiferromagnet

    Full text link
    Histogram Monte-Carlo simulation results are presented for the magnetic-field -- temperature phase diagram of the Ising model on a stacked triangular lattice with antiferromagnetic intraplane and ferromagnetic interplane interactions. Finite-size scaling results for this frustrated system at three points along the paramagnetic transition boundary are presented which strongly suggest a line of triciritcal points at low field and a first-order transition line at higher fields. These results are compared with the corresponding phase diagrams from conventional mean-field theory as well as from the Monte Carlo mean-field calculations of Netz and Berker [Phys. Rev. Lett. {\bf 66}, 377 (1991)].Comment: 6 pages (RevTex 3.0), 8 figures available upon reques

    A joint model for the emission and absorption properties of damped Lyman alpha absorption systems

    Full text link
    The recently discovered population of ultra-faint extended line emitters can account for the majority of the incidence rate of Damped Lyman Alpha systems (DLAs) at z ~ 3 if the line emission is interpreted as Ly alpha. We show here that a model similar to that proposed by Haehnelt, Steinmetz, & Rauch (2000), which explains the incidence rate and kinematics of DLAs in the context of Λ\LambdaCDM models for structure formation, also reproduces the size distribution of the new population of faint Ly alpha emitters for plausible parameters. This lends further support to identification of the emitters with the hitherto elusive population of DLA host galaxies. The observed incidence rate of DLAs together with the observed space density and size distribution of the emitters suggest a duty cycle of ~ 0.2 - 0.4 for the Ly alpha emission from DLA host galaxies. We further show that Ly alpha cooling is expected to contribute little to the Ly alpha emission for the majority of emitters. This leaves centrally concentrated star formation at a rate of a few tenths M_sun/yr, surrounded by extended Ly alpha halos with radii up to 30-50 kpc, as the most plausible explanation for the origin of the emission. Both the luminosity function of Ly alpha emission and the velocity width distribution of low ionization absorption require that galaxies inside Dark Matter (DM) halos with virial velocities < 50 - 70 km/s contribute little to the incidence rate of DLAs at z ~ 3, suggesting that energy and momentum input due to star formation efficiently removes gas from these halos. Galaxies with DM halos with virial velocities of 100 - 150 km/s appear to account for the majority of DLA host galaxies. DLA host galaxies at z ~ 3 should thus become the building blocks of typical present-day galaxies.Comment: 9 Pages, 4 Figures. Submitted to MNRA

    The luminosity function and the rate of Swift's Gamma Ray Bursts

    Full text link
    We invert directly the redshift - luminosity distribution of observed long Swift GRBs to obtain their rate and luminosity function. Our best fit rate is described by a broken power law that rises like (1+z)^2.1{+0.5-0.6} for 0<z<3 and decrease like (1+z)^-1.4{+2.4-1.0} for z>3. The local rate is 1.3^{+0.6-0.7} [Gpc^-3 yr^-1]. The luminosity function is well described by a broken power law with a break at L* = 10^52.5{+-0.2}[erg/sec] and with indices alpha = 0.2^{+0.2-0.1} and beta = 1.4^{+0.3-0.6}. The recently detected GRB 090423, with redshift ~8, fits nicely into the model's prediction, verifying that we are allowed to extend our results to high redshifts. While there is a possible agreement with the star formation rate (SFR) for z<3, the high redshift slope is shallower than the steep decline in the SFR for 4<z. However we cannot rule out a GRB rate that follows one of the recent SFR models.Comment: Significantly revised version, including a comparison of the GRB rate to new results on the SFR, revisions in response to the referee comments and comparison with other works on the GRB rate. 28 pages, 14 figures, 5 tables. MNRAS
    • …
    corecore