412 research outputs found
Characterisation of feline renal cortical fibroblast cultures and their transcriptional response to transforming growth factor beta 1
Chronic kidney disease (CKD) is common in geriatric cats, and the most prevalent pathology is chronic tubulointerstitial inflammation and fibrosis. The cell type predominantly responsible for the production of extra-cellular matrix in renal fibrosis is the myofibroblast, and fibroblast to myofibroblast differentiation is probably a crucial event. The cytokine TGF-β1 is reportedly the most important regulator of myofibroblastic differentiation in other species. The aim of this study was to isolate and characterise renal fibroblasts from cadaverous kidney tissue of cats with and without CKD, and to investigate the transcriptional response to TGF-β1
Persistent isolated impairment of gas transfer following COVID-19 pneumonitis relates to perfusion defects on dual-energy computed tomography
Breathlessness is common in patients after COVID-19 [1]. Patients may have an isolated impairment of gas transfer (diffusion of the lung for carbon monoxide, DLCO) at lung function testing, often without obvious interstitial lung disease or classical pulmonary emboli (PE) on imaging. Iodine maps from post-COVID patients undergoing dual energy computed tomography (DECT) demonstrate hypoenhancement in areas of normal lung parenchyma [2] (figure 1). We hypothesized that in breathless patients recovering from COVID-19, low DLCO would correlate with a CT marker of lung perfusion, measured using DECT-derived iodine enhancement, including in patients where parenchymal disease was absent. As an even more specific indicator for the pulmonary vascular compartment, we hypothesized that KCO (DLCO corrected for alveolar volume) would even better correlate with DECT perfusion, and more so than forced vital capacity (FVC) and CT measures of interstitial lung involvement
Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment
Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs
Survival in Norwegian BRCA1 mutation carriers with breast cancer
Several studies of survival in women with BRCA1 mutations have shown either reduced survival or no difference compared to controls. Programmes for early detection and treatment of inherited breast cancer, have failed to demonstrate a significant improvement in survival in BRCA1 mutation carriers
A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279
It is widely accepted that strong and variable radiation detected over all
accessible energy bands in a number of active galaxies arises from a
relativistic, Doppler-boosted jet pointing close to our line of sight. The size
of the emitting zone and the location of this region relative to the central
supermassive black hole are, however, poorly known, with estimates ranging from
light-hours to a light-year or more. Here we report the coincidence of a
gamma-ray flare with a dramatic change of optical polarization angle. This
provides evidence for co-spatiality of optical and gamma-ray emission regions
and indicates a highly ordered jet magnetic field. The results also require a
non-axisymmetric structure of the emission zone, implying a curved trajectory
for the emitting material within the jet, with the dissipation region located
at a considerable distance from the black hole, at about 10^5 gravitational
radii.Comment: Published in Nature issued on 18 February 2010. Corresponding
authors: Masaaki Hayashida and Greg Madejsk
A Measure of the Promiscuity of Proteins and Characteristics of Residues in the Vicinity of the Catalytic Site That Regulate Promiscuity
Promiscuity, the basis for the evolution of new functions through ‘tinkering’ of residues in the vicinity of the catalytic site, is yet to be quantitatively defined. We present a computational method Promiscuity Indices Estimator (PROMISE) - based on signatures derived from the spatial and electrostatic properties of the catalytic residues, to estimate the promiscuity (PromIndex) of proteins with known active site residues and 3D structure. PromIndex reflects the number of different active site signatures that have congruent matches in close proximity of its native catalytic site, the quality of the matches and difference in the enzymatic activity. Promiscuity in proteins is observed to follow a lognormal distribution (μ = 0.28, σ = 1.1 reduced chi-square = 3.0E-5). The PROMISE predicted promiscuous functions in any protein can serve as the starting point for directed evolution experiments. PROMISE ranks carboxypeptidase A and ribonuclease A amongst the more promiscuous proteins. We have also investigated the properties of the residues in the vicinity of the catalytic site that regulates its promiscuity. Linear regression establishes a weak correlation (R2∼0.1) between certain properties of the residues (charge, polar, etc) in the neighborhood of the catalytic residues and PromIndex. A stronger relationship states that most proteins with high promiscuity have high percentages of charged and polar residues within a radius of 3 Å of the catalytic site, which is validated using one-tailed hypothesis tests (P-values∼0.05). Since it is known that these characteristics are key factors in catalysis, their relationship with the promiscuity index cross validates the methodology of PROMISE
Nano Random Forests to mine protein complexes and their relationships in quantitative proteomics data
Ever-increasing numbers of quantitative proteomics data sets constitute an underexploited resource for investigating protein function. Multiprotein complexes often follow consistent trends in these experiments, which could provide insights about their biology. Yet, as more experiments are considered, a complex’s signature may become conditional and less identifiable. Previously we successfully distinguished the general proteomic signature of genuine chromosomal proteins from hitchhikers using the Random Forests (RF) machine learning algorithm. Here we test whether small protein complexes can define distinguishable signatures of their own, despite the assumption that machine learning needs large training sets. We show, with simulated and real proteomics data, that RF can detect small protein complexes and relationships between them. We identify several complexes in quantitative proteomics results of wild-type and knockout mitotic chromosomes. Other proteins covary strongly with these complexes, suggesting novel functional links for later study. Integrating the RF analysis for several complexes reveals known interdependences among kinetochore subunits and a novel dependence between the inner kinetochore and condensin. Ribosomal proteins, although identified, remained independent of kinetochore subcomplexes. Together these results show that this complex-oriented RF (NanoRF) approach can integrate proteomics data to uncover subtle protein relationships. Our NanoRF pipeline is available online
Diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome after renal transplantation in the United States
BACKGROUND: The incidence and risk factors for diabetic ketoacidosis (diabetic ketoacidosis) and hyperglycemic hyperosmolar syndrome (hyperglycemic hyperosmolar syndrome, previously called non-ketotic hyperosmolar coma) have not been reported in a national population of renal transplant (renal transplantation) recipients. METHODS: We performed a historical cohort study of 39,628 renal transplantation recipients in the United States Renal Data System between 1 July 1994 and 30 June 1998, followed until 31 Dec 1999. Outcomes were hospitalizations for a primary diagnosis of diabetic ketoacidosis (ICD-9 code 250.1x) and hyperglycemic hyperosmolar syndrome (code 250.2x). Cox Regression analysis was used to calculate adjusted hazard ratios for time to hospitalization for diabetic ketoacidosis or hyperglycemic hyperosmolar syndrome. RESULTS: The incidence of diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome were 33.2/1000 person years (PY) and 2.7/1000 PY respectively for recipients with a prior diagnosis of diabetes mellitus (DM), and 2.0/1000 PY and 1.1/1000 PY in patients without DM. In Cox Regression analysis, African Americans (AHR, 2.71, 95 %CI, 1.96–3.75), females, recipients of cadaver kidneys, patients age 33–44 (vs. >55), more recent year of transplant, and patients with maintenance TAC (tacrolimus, vs. cyclosporine) had significantly higher risk of diabetic ketoacidosis. However, the rate of diabetic ketoacidosis decreased more over time in TAC users than overall. Risk factors for hyperglycemic hyperosmolar syndrome were similar except for the significance of positive recipient hepatitis C serology and non-significance of female gender. Both diabetic ketoacidosis (AHR, 2.44, 95% CI, 2.10–2.85, p < 0.0001) and hyperglycemic hyperosmolar syndrome (AHR 1.87, 95% CI, 1.22–2.88, p = 0.004) were independently associated with increased mortality. CONCLUSIONS: We conclude that diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome were associated with increased risk of mortality and were not uncommon after renal transplantation. High-risk groups were identified
Cerebrospinal fluid matrix metalloproteinase-9 increases during treatment of recurrent malignant gliomas
<p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinases (MMPs) are enzymes that promote tumor invasion and angiogenesis by enzymatically remodeling the extracellular matrix. MMP-2 and MMP-9 are the most abundant forms of MMPs in malignant gliomas, while a 130 kDa MMP is thought to be MMP-9 complexed to other proteinases. This study determined whether doxycycline can block MMP activity <it>in vitro</it>. We also measured MMP-2 and MMP-9 levels in cerebrospinal fluid (CSF) from patients with recurrent malignant gliomas.</p> <p>Methods</p> <p>To determine whether doxycycline can block MMP activity, we measured the extent of doxycyline-mediated MMP-2 and MMP-9 inhibition <it>in vitro </it>using epidermal growth factor receptor (EGFR) transfected U251 glioma cell lines. MMP activity was measured using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) zymography. In addition, patients underwent lumbar puncture for CSF sampling at baseline, after 6 weeks (1 cycle), and after 12 weeks (2 cycles), while being treated with a novel chemotherapy regimen of irinotecan, thalidomide, and doxycycline designed to block growth/proliferation, angiogenesis, and invasion. Irinotecan was given at 125 mg/m<sup>2</sup>/week for 4 weeks in 6-week cycles, together with continuous doxycycline at 100 mg twice daily on Day 1 and 50 mg twice daily thereafter. Daily thalidomide dose in our cohort was 400 mg. Tumor progression was monitored by magnetic resonance imaging (MRI).</p> <p>Results</p> <p>Doxycyline <it>in vitro </it>completely abolished MMP-9 activity at 500 μg/ml while there was only 30 to 50% inhibition of MMP-2 activity. Four patients respectively completed 4, 3, 1, and 2 cycles of irinotecan, thalidomide, and doxycycline. Patient enrollment was terminated after one patient developed radiologically defined pulmonary embolism, and another had probable pulmonary embolism. Although CSF MMP-2 and 130 kDa MMP levels were stable, MMP-9 level progressively increased during treatment despite stable MRI.</p> <p>Conclusion</p> <p>Doxycycline can block MMP-2 and MMP-9 activities from glioma cells <it>in vitro</it>. Increased CSF MMP-9 activity could be a biomarker of disease activity in patients with malignant gliomas, before any changes are detectable on MRI.</p
- …