21 research outputs found

    How reproducible are surface areas calculated from the BET equation?

    Get PDF
    Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible

    Optimization Of Capture In Multiple Access Radio Systems With Rayleigh Fading And Random Power Levels

    No full text
    To enhance the throughput of a slotted random access protocol in a radio communication system, we describe the use of a scheme in which multiple power levels are used at the transmitters. We first consider a situation in which n transmitters are simultaneously trying to send a packet to a central receiving station using a time-slotted access protocol, like slotted ALOHA. Each of these transmitters randomly chooses one of m discrete power levels during each attempt to send a packet. One of the simultaneously sent packets can often be successfully received due to the power capture effect. In this paper, we determine the optimal transmit probabilities for the power levels as well as the optimal values of the power levels themselves, when their range is constrained and in the presence of Rayleigh fading and power capture. After determining the precise optimal power levels and probabilities for maximizing the capture probabilities (i.e., for a given n), we propose a less complex, but nearly..

    Correlating MOF-808 parameters with mixed-matrix membrane (MMM) CO2 permeation for a more rational MMM development

    No full text
    Consistent structure-performance relationships for the design of MOF (metal-organic framework)-based mixed-matrix membranes (MMMs) for gas separation are currently scarce in MMM literature. An important step in establishing such relationships could be to correlate intrinsic MOF parameters, such as CO2 uptake and the CO2 adsorption enthalpy (Q(st)), with the separation performance indicators of the MMM (i.e. separation factor and permeability). Such a study presumes the availability of a platform MOF, which allows systematic comparison of the relevant MOF parameters. MOF-808 can take up the role of such a platform MOF, owing to its unique cluster coordination and subsequent ease of introducing additional functional molecules. For this purpose, formic acid (FA) modulated MOF-808 (MOF-FA) was post-synthetically functionalized with five different ligands (histidine (His), benzoic acid (BA), glycolic acid (GA), lithium sulfate (Li2SO4) and trifluoroacetic acid (TFA)) to create a series of isostructural MOFs with varying affinity/diffusivity properties but as constant as possible remaining properties (e.g. particles size distribution). CO2 uptake and CO2 adsorption enthalpy of the MOFs were determined with CO2 sorption experiments and Clausius-Clapeyron analysis. These MOF properties were subsequently linked to the CO2/N-2 separation factor and CO2 permeability of the corresponding MMM. Unlike what is often assumed in literature, MOF-808 CO2 uptake proved to be a poor indicator for MMM performance. In contrast, a strong correlation was observed between Q(st) at high CO2 loadings on one hand and CO2 permeability under varying feed conditions on the other hand. Furthermore, correlation coefficients of Q(st,15) and Q(st,30) (Q(st) at 15 and 30 cm(3) (STP) g(-1)) with the separation factor were significantly better than those calculated for CO2 uptake. The surprising lack of correlation between membrane performance and CO2 uptake and the strong correlation with Q(st) opens possibilities to rationally design MMMs and stresses the need for more fundamental research focused on finding consistent relationships between filler properties and the final membrane performance

    Produção de mudas de alface, pepino e pimentão em substratos combinando areia, solo e Plantmax® Production of lettuce, cucumber and sweet pepper seedlings in substrate with different combinations of sand, soil and Plantmax®

    No full text
    O efeito do substrato comercial Plantmax®; e sua combinação com solo e areia, foi avaliado de acordo com a resposta biológica de três culturas olerícolas (alface, pepino e pimentão), sendo o experimento conduzido em casa de vegetação na ESALQ/USP em Piracicaba de abril a junho de 1996. Os tratamentos consistiram do substrato comercial Plantmax®; e da mistura deste com areia, com solo, na proporção 1:1 em volume, e mistura dos três, proporção 1:1:1. O substrato Plantmax®; propiciou menor velocidade de emergência para alface e pepino e maior para pimentão. Resultou, também, em maior altura de plântulas nas três diferentes culturas. O menor comprimento de raízes das três olerícolas foi obtido com o substrato Plantmax®; + solo + areia. A maior produção de matéria seca de plântulas e raízes de alface e de pimentão foram obtidas com o substrato Plantmax®;. Por outro lado, a menor produção de matéria seca foi obtida com a mistura dos três componentes para a cultura do pepino. O desempenho obtido nas misturas de Plantmax®; com solo ou com areia, indicam ser uma alternativa técnica viável ao uso de substratos comerciais<br>The effect of commercial substrate Plantmax®; and it's combination with soil and sand, was evaluated according to the biological response of three vegetable crops (lettuce, cucumber and sweet pepper). The experiment was carried out in plastic tunnels, at ESALQ/USP, Piracicaba-SP, from April to June, 1996. The treatments consisted of the commercial substrate Plantmax®;, the mixture of Plantmax®; with sand, Plantmax®;with soil and the mixture of Plantmax®;with both soil and sand. Lower lettuce and cucumber seedlings emergence and faster sweet pepper seedlings emergence were observed with Plantmax®; substrate. It also resulted in bigger size of seedlings of these three different plant species. Smaller roots of these three species were observed with the mixture of Plantmax®; plus soil plus sand. Higher production of seedling dry matter in lettuce and sweet pepper was obtained with the Plantmax®; substrate. Lower cucumber seedling dry matter production was obtained with the mixture of these three substrates. The performance obtained with the mixture of Plantmax®; with soil or sand, indicates it as a viable alternative to the use of commercial substrat
    corecore