10 research outputs found

    Cardiac fibroblasts influence cardiomyocyte phenotype in vitro

    No full text
    Cardiac fibroblasts impact myocardial development and remodeling through intercellular contact with cardiomyocytes, but less is known about noncontact, profibrotic signals whereby fibroblasts alter cardiomyocyte behavior. Fibroblasts and cardiomyocytes were harvested from newborn rat ventricles and separated by serial digestion and gradient centrifugation. Cardiomyocytes were cultured in 1) standard medium, 2) standard medium diluted 1:1 with PBS, or 3) standard medium diluted 1:1 with medium conditioned > or =72 h by cardiac fibroblasts. Serum concentrations were held constant under all media conditions, and complete medium exchanges were performed daily. Cardiomyocytes began contracting within 24 h at clonal or mass densities with <5% of cells expressing vimentin. Immunocytochemical analysis revealed progressive expression of alpha-smooth muscle actin in cardiomyocytes after 24 h in all conditions. Only cardiomyocytes in fibroblast-conditioned medium stopped contracting by 72 h. There was a significant, sustained increase in vimentin expression specific to these cultures (means +/- SD: conditioned 46.3 +/- 6.0 vs. control 5.3 +/- 2.9%, P < 0.00025) typically with cardiac myosin heavy chain coexpression. Proteomics assays revealed 10 cytokines (VEGF, GRO/KC, monocyte chemoattractant protein-1, leptin, macrophage inflammatory protein-1alpha, IL-6, IL-10, IL-12p70, IL-17, and tumor necrosis factor-alpha) at or below detection levels in unconditioned medium that were significantly elevated in fibroblast-conditioned medium. Latent transforming growth factor-beta and RANTES were present in unconditioned medium but rose to higher levels in conditioned medium. Only granulocyte-macrophage colony-stimulating factor was present above threshold levels in standard medium but decreased with fibroblast conditioning. These data indicated that under the influence of fibroblast-conditioned medium, cardiomyocytes exhibited marked hypertrophy, diminished contractile capacity, and phenotype plasticity distinct from the dedifferentiation program present under standard culture conditions

    Dusty plasma effects in near earth space and interplanetary medium

    No full text
    We review dust and meteoroid fluxes and their dusty plasma effects in the interplanetary medium near Earth orbit and in the Earth’s ionosphere. Aside from in-situ measurements from sounding rockets and spacecraft, experimental data cover radar and optical observations of meteors. Dust plasma interactions in the interplanetary medium are observed by the detection of charged dust particles, by the detection of dust that is accelerated in the solar wind and by the detection of ions and neutrals that are released from the dust. These interactions are not well understood and lack quantitative description. There is still a huge discrepancy in the estimates of meteoroid mass deposition into the atmosphere. The radar meteor observations are of particular interest for determining this number. Dust measurements from spacecraft require a better understanding of the dust impact ionization process,as well as of the dust charging processes. The latter are also important for further studying nanodust trajectories in the solar wind. Moreover understanding of the complex dependencies that cause the variation of nanodust fluxes is still a challenge.540010117 Gästprofessur Mann540010110 Driftsmedel Pellinen-Wannber
    corecore