2,115 research outputs found

    Baryogenesis after Hyperextended Inflation

    Full text link
    We study a baryogenesis mechanism operating in the context of hyperextended inflation and making use of a coupling between the scalar field and a standard model global current, such as B or B-L. The method is efficient at temperatures at which these currents are not conserved due to some higher dimensional operator. The particle physics and cosmological phenomenology are discussed. We consider constraints stemming from nucleosynthesis and solar system experiments.Comment: 7 pages, 1 figure, uses RevTe

    Challenges for Superstring Cosmology

    Get PDF
    We consider whether current notions about superstring theory below the Planck scale are compatible with cosmology. We find that the anticipated form for the dilaton interaction creates a serious roadblock for inflation and makes it unlikely that the universe ever reaches a state with zero cosmological constant and time-independent gravitational constant.Comment: 14 pages, 2 figures available as eps files on reques

    Extended Inflation from Strings

    Full text link
    We study the possibility of extended inflation in the effective theory of gravity from strings compactified to four dimensions and find that it strongly depends on the mechanism of supersymmetry breaking. We consider a general class of string--inspired models which are good candidates for successful extended inflation. In particular, the ω\omega--problem of ordinary extended inflation is automatically solved by the production of only very small bubbles until the end of inflation. We find that the inflaton field could belong either to the untwisted or to the twisted massless sectors of the string spectrum, depending on the supersymmetry breaking superpotential.Comment: 18p

    Probing deviations from General Relativity with the Euclid spectroscopic survey

    Full text link
    We discuss the ability of the planned Euclid mission to detect deviations from General Relativity using its extensive redshift survey of more than 50 Million galaxies. Constraints on the gravity theory are placed measuring the growth rate of structure within 14 redshift bins between z=0.7 and z=2. The growth rate is measured from redshift-space distortions, i.e. the anisotropy of the clustering pattern induced by coherent peculiar motions. This is performed in the overall context of the Euclid spectroscopic survey, which will simultaneously measure the expansion history of the universe, using the power spectrum and its baryonic features as a standard ruler, accounting for the relative degeneracies of expansion and growth parameters. The resulting expected errors on the growth rate in the different redshift bins, expressed through the quantity f\sigma_8, range between 1.3% and 4.4%. We discuss the optimisation of the survey configuration and investigate the important dependence on the growth parameterisation and the assumed cosmological model. We show how a specific parameterisation could actually drive the design towards artificially restricted regions of the parameter space. Finally, in the framework of the popular "\gamma -parameterisation", we show that the Euclid spectroscopic survey alone will already be able to provide substantial evidence (in Bayesian terms) if the growth index differs from the GR value \gamma=0.55 by at least \sim 0.13. This will combine with the comparable inference power provided by the Euclid weak lensing survey, resulting in Euclid's unique ability to provide a decisive test of modified gravity.Comment: 18 pages, 15 figures, accepted by MNRA

    Positive tension 3-branes in an AdS5AdS_{5} bulk

    Full text link
    In this work, we review and extend the so-called consistency conditions for the existence of a braneworld scenario in arbitrary dimensions in the Brans-Dicke (BD) gravitational theory. After that, we consider the particular case of a five-dimensional scenario which seems to have phenomenological interesting implications. We show that, in the BD framework, it is possible to achieve necessary conditions pointing to the possibility of accommodating branes with positive tensions in an AdS bulk by the presence of the additional BD scalar field, avoiding in this way the necessity of including unstable objects in the compactification scheme. Furthermore, in the context of time variable brane tension, it is shown that the brane tension may change its sign, following the bulk cosmological constant sign.Comment: 15 pages, new version to appear in JHE

    Probing the Origins of Voids in the Distribution of Galaxies

    Full text link
    If the voids that we see today in the distribution of galaxies existed at recombination, they will leave an imprint on the cosmic microwave background (CMB). On the other hand, if these voids formed much later, their effect on the CMB will be negligible and will not be observed with the current generation of experiments. In this paper presented at the 2004 Annual Scientific Meeting of the Astronomical Society of Australia, we discuss our ongoing investigations into voids of primordial origin. We show that if voids in the cold dark matter distribution existed at the epoch of decoupling, they could contribute significantly to the apparent rise in CMB power on small scales detected by the Cosmic Background Imager (CBI) Deep Field. Here we present our improved method for predicting the effects of primordial voids on the CMB in which we treat a void as an external source in the cold dark matter (CDM) distribution employing a Boltzmann solver. Our improved predictions include the effects of a cosmological constant (Lambda) and acoustic oscillations generated by voids at early times. We find that models with relatively large voids on the last scattering surface predict too much CMB power in an Einstein--de Sitter background cosmology but could be consistent with the current CMB observations in a Lambda-CDM universe.Comment: 9 pages, 8 figures, paper presented at the 2004 Annual Scientific Meeting of the Astronomical Society of Australia, accepted for publication in PAS

    Generalized Brans-Dicke cosmology in the presence of matter and dark energy

    Full text link
    We study the Generalized Brans-Dicke cosmology in the presence of matter and dark energy. Of particular interest for a constant Brans-Dicke parameter, the de Sitter space has also been investigated.Comment: 9 page

    Redshift-weighted constraints on primordial non-Gaussianity from the clustering of the eBOSS DR14 quasars in Fourier space

    Full text link
    We present constraints on local primordial non-Gaussianity (PNG), parametrized through fNLlocf^{\rm loc}_{\rm NL}, using the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample. We measure and analyze the anisotropic clustering of the quasars in Fourier space, testing for the scale-dependent bias introduced by primordial non-Gaussianity on large scales. We derive and employ a power spectrum estimator using optimal weights that account for the redshift evolution of the PNG signal. We find constraints of 51<fNLloc<21-51<f^{\rm loc}_{\rm NL}<21 at 95% confidence level. These are amont the tightest constraints from Large Scale Structure (LSS) data. Our redshift weighting improves the error bar by 15% in comparison to the unweighted case. If quasars have lower response to PNG, the constraint degrades to 81<fNLloc<26-81<f^{\rm loc}_{\rm NL}<26, with a 40% improvement over the standard approach. We forecast that the full eBOSS dataset could reach σfNLloc5-8\sigma_{f^{\rm loc}_{\rm NL}}\simeq 5\text{-}8 using optimal methods and full range of scales.Comment: 28 pages, 12 figures. Comments welcome

    Gravity and the Quantum Vacuum Inertia Hypothesis

    Full text link
    In previous work it has been shown that the electromagnetic quantum vacuum, or electromagnetic zero-point field, makes a contribution to the inertial reaction force on an accelerated object. We show that the result for inertial mass can be extended to passive gravitational mass. As a consequence the weak equivalence principle, which equates inertial to passive gravitational mass, appears to be explainable. This in turn leads to a straightforward derivation of the classical Newtonian gravitational force. We call the inertia and gravitation connection with the vacuum fields the quantum vacuum inertia hypothesis. To date only the electromagnetic field has been considered. It remains to extend the hypothesis to the effects of the vacuum fields of the other interactions. We propose an idealized experiment involving a cavity resonator which, in principle, would test the hypothesis for the simple case in which only electromagnetic interactions are involved. This test also suggests a basis for the free parameter η(ν)\eta(\nu) which we have previously defined to parametrize the interaction between charge and the electromagnetic zero-point field contributing to the inertial mass of a particle or object.Comment: 18 pages, no figures. Annalen der Physik, 2005, in press. New version reformatte
    corecore