8 research outputs found

    Analysis of mid-twentieth century rainfall trends and variability over southwestern Uganda

    No full text
    A methodology has been applied to investigate the spatial variability and trends existent in a mid-twentieth century climatic time series (for the period 1943–1977) recorded by 58 climatic stations in the Albert–Victoria water management area in Uganda. Data were subjected to quality checks before further processing. In the present work, temporal trends were analyzed using Mann–Kendall and linear regression methods. Heterogeneity of monthly rainfall was investigated using the precipitation concentration index (PCI). Results revealed that 53 % of stations have positive trends where 25 % are statistically significant and 45 % of stations have negative trends with 23 % being statistically significant. Very strong trends at 99 % significance level were revealed at 12 stations. Positive trends in January, February, and November at 40 stations were observed. The highest rainfall was recorded in April, while January, June, and July had the lowest rainfall. Spatial analysis results showed that stations close to Lake Victoria recorded high amounts of rainfall. Average annual coefficient of variability was 19 %, signifying low variability. Rainfall distribution is bimodal with maximums experienced in March–April–May and September–October–November seasons of the year. Analysis also revealed that PCI values showed a moderate to seasonal rainfall distribution. Spectral analysis of the time components reveals the existence of a major period around 3, 6, and 10 years. The 6- and 10-year period is a characteristic of September–October–November, March–April– May, and annual time series.http://link.springer.com/journal/704hb201

    Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI

    No full text
    A growing number of artificial intelligence (AI)-based clinical decision support systems are showing promising performance in preclinical, in silico evaluation, but few have yet demonstrated real benefit to patient care. Early-stage clinical evaluation is important to assess an AI system's actual clinical performance at small scale, ensure its safety, evaluate the human factors surrounding its use and pave the way to further large-scale trials. However, the reporting of these early studies remains inadequate. The present statement provides a multi-stakeholder, consensus-based reporting guideline for the Developmental and Exploratory Clinical Investigations of DEcision support systems driven by Artificial Intelligence (DECIDE-AI). We conducted a two-round, modified Delphi process to collect and analyze expert opinion on the reporting of early clinical evaluation of AI systems. Experts were recruited from 20 pre-defined stakeholder categories. The final composition and wording of the guideline was determined at a virtual consensus meeting. The checklist and the Explanation & Elaboration (E&E) sections were refined based on feedback from a qualitative evaluation process. In total, 123 experts participated in the first round of Delphi, 138 in the second round, 16 in the consensus meeting and 16 in the qualitative evaluation. The DECIDE-AI reporting guideline comprises 17 AI-specific reporting items (made of 28 subitems) and ten generic reporting items, with an E&E paragraph provided for each. Through consultation and consensus with a range of stakeholders, we developed a guideline comprising key items that should be reported in early-stage clinical studies of AI-based decision support systems in healthcare. By providing an actionable checklist of minimal reporting items, the DECIDE-AI guideline will facilitate the appraisal of these studies and replicability of their findings
    corecore