2,424 research outputs found

    Factory Compliance Life Cycle

    Get PDF
    Nike’s strategy to enforce monitoring and compliance of labor codes in contract factories

    Strange men [Lyric poem]

    Get PDF

    Conformally invariant scaling limits in planar critical percolation

    Full text link
    This is an introductory account of the emergence of conformal invariance in the scaling limit of planar critical percolation. We give an exposition of Smirnov's theorem (2001) on the conformal invariance of crossing probabilities in site percolation on the triangular lattice. We also give an introductory account of Schramm-Loewner evolutions (SLE(k)), a one-parameter family of conformally invariant random curves discovered by Schramm (2000). The article is organized around the aim of proving the result, due to Smirnov (2001) and to Camia and Newman (2007), that the percolation exploration path converges in the scaling limit to chordal SLE(6). No prior knowledge is assumed beyond some general complex analysis and probability theory.Comment: 55 pages, 10 figure

    Strong path convergence from Loewner driving function convergence

    Full text link
    We show that, under mild assumptions on the limiting curve, a sequence of simple chordal planar curves converges uniformly whenever certain Loewner driving functions converge. We extend this result to random curves. The random version applies in particular to random lattice paths that have chordal SLEκ\mathrm {SLE}_{\kappa} as a scaling limit, with κ<8\kappa <8 (nonspace-filling). Existing SLEκ\mathrm {SLE}_{\kappa} convergence proofs often begin by showing that the Loewner driving functions of these paths (viewed from ∞\infty) converge to Brownian motion. Unfortunately, this is not sufficient, and additional arguments are required to complete the proofs. We show that driving function convergence is sufficient if it can be established for both parametrization directions and a generic observation point.Comment: Published in at http://dx.doi.org/10.1214/10-AOP627 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Central limit theorem for biased random walk on multi-type Galton-Watson trees

    Full text link
    Let T be a rooted supercritical multi-type Galton-Watson (MGW) tree with types coming from a finite alphabet, conditioned to non-extinction. The lambda-biased random walk (X_t, t>=0) on T is the nearest-neighbor random walk which, when at a vertex v with d(v) offspring, moves closer to the root with probability lambda/[lambda+d(v)], and to each of the offspring with probability 1/[lambda+d(v)]. This walk is recurrent for lambda>=rho and transient for 0<lambda<rho, with rho the Perron-Frobenius eigenvalue for the (assumed) irreducible matrix of expected offspring numbers. Subject to finite moments of order p>4 for the offspring distributions, we prove the following quenched CLT for lambda-biased random walk at the critical value lambda=rho: for almost every T, the process |X_{floor(nt)}|/sqrt{n} converges in law as n tends to infinity to a reflected Brownian motion rescaled by an explicit constant. This result was proved under some stronger assumptions by Peres-Zeitouni (2008) for single-type Galton-Watson trees. Following their approach, our proof is based on a new explicit description of a reversing measure for the walk from the point of view of the particle (generalizing the measure constructed in the single-type setting by Peres-Zeitouni), and the construction of appropriate harmonic coordinates. In carrying out this program we prove moment and conductance estimates for MGW trees, which may be of independent interest. In addition, we extend our construction of the reversing measure to a biased random walk with random environment (RWRE) on MGW trees, again at a critical value of the bias. We compare this result against a transience-recurrence criterion for the RWRE generalizing a result of Faraud (2011) for Galton-Watson trees.Comment: 44 pages, 1 figur

    Factor models on locally tree-like graphs

    Full text link
    We consider homogeneous factor models on uniformly sparse graph sequences converging locally to a (unimodular) random tree TT, and study the existence of the free energy density Ï•\phi, the limit of the log-partition function divided by the number of vertices nn as nn tends to infinity. We provide a new interpolation scheme and use it to prove existence of, and to explicitly compute, the quantity Ï•\phi subject to uniqueness of a relevant Gibbs measure for the factor model on TT. By way of example we compute Ï•\phi for the independent set (or hard-core) model at low fugacity, for the ferromagnetic Ising model at all parameter values, and for the ferromagnetic Potts model with both weak enough and strong enough interactions. Even beyond uniqueness regimes our interpolation provides useful explicit bounds on Ï•\phi. In the regimes in which we establish existence of the limit, we show that it coincides with the Bethe free energy functional evaluated at a suitable fixed point of the belief propagation (Bethe) recursions on TT. In the special case that TT has a Galton-Watson law, this formula coincides with the nonrigorous "Bethe prediction" obtained by statistical physicists using the "replica" or "cavity" methods. Thus our work is a rigorous generalization of these heuristic calculations to the broader class of sparse graph sequences converging locally to trees. We also provide a variational characterization for the Bethe prediction in this general setting, which is of independent interest.Comment: Published in at http://dx.doi.org/10.1214/12-AOP828 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore