6,608 research outputs found

    How do great bowerbirds construct perspective illusions?

    Get PDF
    This is the final version of the article. Available from the Royal Society via the DOI in this record.Many animals build structures to provide shelter, avoid predation, attract mates or house offspring, but the behaviour and potential cognitive processes involved during building are poorly understood. Great bowerbird (Ptilinorhynchus nuchalis) males build and maintain display courts by placing tens to hundreds of objects in a positive size-distance gradient. The visual angles created by the gradient create a forced perspective illusion that females can use to choose a mate. Although the quality of illusion is consistent within males it varies among males, which may reflect differences in how individuals reconstruct their courts. We moved all objects off display courts to determine how males reconstructed the visual illusion. We found that all individuals rapidly created the positive size-distance gradient required for forced perspective within the first 10 objects placed. Males began court reconstruction by placing objects in the centre of the court and then placing objects further out, a technique commonly used when humans lay mosaics. The number of objects present after 72 hours was not related to mating success or the quality of the illusion, indicating that male skill at arranging objects rather than absolute number of objects appears to be important. We conclude that differences arise in the quality of forced perspective illusions despite males using the same technique to reconstruct their courts.LAK received funding from the People Programme (Marie Curie Actions) of the 459 European Union’s Seventh Framework Programme (FP7/2007-2013) under REA 460 grant agreement PIIF-GA-2012-327423. This research was partially funded by 461 Editor’s fees from Springer-Verlag and Deakin University to JAE

    Near-UV OH Prompt Emission in the Innermost Coma of 103P/Hartley 2

    Full text link
    The Deep Impact spacecraft fly-by of comet 103P/Hartley 2 occurred on 2010 November 4, one week after perihelion with a closest approach (CA) distance of about 700 km. We used narrowband images obtained by the Medium Resolution Imager (MRI) onboard the spacecraft to study the gas and dust in the innermost coma. We derived an overall dust reddening of 15\%/100 nm between 345 and 749 nm and identified a blue enhancement in the dust coma in the sunward direction within 5 km from the nucleus, which we interpret as a localized enrichment in water ice. OH column density maps show an anti-sunward enhancement throughout the encounter except for the highest resolution images, acquired at CA, where a radial jet becomes visible in the innermost coma, extending up to 12 km from the nucleus. The OH distribution in the inner coma is very different from that expected for a fragment species. Instead, it correlates well with the water vapor map derived by the HRI-IR instrument onboard Deep Impact \citep{AHearn2011}. Radial profiles of the OH column density and derived water production rates show an excess of OH emission during CA that cannot be explained with pure fluorescence. We attribute this excess to a prompt emission process where photodissociation of H2_2O directly produces excited OH*(A2Σ+A^2\it{\Sigma}^+) radicals. Our observations provide the first direct imaging of Near-UV prompt emission of OH. We therefore suggest the use of a dedicated filter centered at 318.8 nm to directly trace the water in the coma of comets.Comment: 21 page

    Quantum tomography of mesoscopic superpositions of radiation states

    Get PDF
    We show the feasibility of a tomographic reconstruction of Schr\"{o}dinger cat states generated according to the scheme proposed by S. Song, C.M. Caves and B. Yurke [Phys. Rev. A 41, 5261 (1990)]. We present a technique that tolerates realistic values for quantum efficiency at photodetectors. The measurement can be achieved by a standard experimental setup.Comment: Submitted to Phys. Rev. Lett.; 4 pages including 6 ps figure

    Fresh Activity in Old Systems: Radio AGN in Fossil Groups of Galaxies

    Full text link
    We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from SDSS Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L_1.4GHz > 10^23 W Hz^-1) active galactic nucleus (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.Comment: Accepted for publication in A

    Fermi Surface and gap parameter in high-Tc superconductors: the Stripe Quantum Critical Point scenario

    Full text link
    We study the single-particle spectral properties of electrons coupled to quasicritical charge and spin fluctuations close to a stripe-phase, which is governed by a Quantum Critical Point near optimum doping. We find that spectral weight is transferred from the quasiparticle peak to incoherent dispersive features. As a consequence the distribution of low-laying spectral weight is modified with respect to the quasiparticle Fermi surface. The interplay of charge and spin fluctuations reproduces features of the observed Fermi surface, such as the asymmetric suppression of spectral weight near the M points of the Brillouin zone. Within the model, we also analyze the interplay between repulsive spin and attractive charge fluctuations in determining the symmetry and the peculiar momentum dependence of the superconducting gap parameter. When both spin and charge fluctuations are coupled to the electrons, we find dx2y2d_{x^2-y^2}-wave gap symmetry in a wide range of parameter. A crossover dd- vs ss-wave symmetry of the gap may occur when the strength of charge fluctuations increases with respect to spin fluctuations.Comment: 18 pages, 3 included figures, to be published on Physica

    Spectral properties of the X-ray binary pulsar LMC X-4 during different intensity states

    Get PDF
    We present spectral variations of the binary X-ray pulsar LMC X-4 observed with the RXTE/PCA during different phases of its 30.5 day long third period. Only out of eclipse data were used for this study. The 3-25 keV spectrum, modeled with high energy cut-off power-law and iron line emission is found to show strong dependence on the intensity state. Correlations between the Fe line emission flux and different parameters of the continuum are presented here.Comment: 4 pages, 4 figure

    California scrub-jays reduce visual cues available to potential pilferers by matching food colour to caching substrate

    Get PDF
    This is the final version. Available from the Royal Society via the DOI in this record. Some animals hide food to consume later; however, these caches are susceptible to theft by conspecifics and heterospecifics. Caching animals can use protective strategies to minimize sensory cues available to potential pilferers, such as caching in shaded areas and in quiet substrate. Background matching (where object patterning matches the visual background) is commonly seen in prey animals to reduce conspicuousness, and caching animals may also use this tactic to hide caches, for example, by hiding coloured food in a similar coloured substrate. We tested whether California scrubjays (Aphelocoma californica) camouflage their food in this way by offering them caching substrates that either matched or did not match the colour of food available for caching. We also determined whether this caching behaviour was sensitive to social context by allowing the birds to cache when a conspecific potential pilferer could be both heard and seen (acoustic and visual cues present), or unseen (acoustic cues only). When caching events could be both heard and seen by a potential pilferer, birds cached randomly in matching and non-matching substrates. However, they preferentially hid food in the substrate that matched the food colour when only acoustic cues were present. This is a novel cache protection strategy that also appears to be sensitive to social context. We conclude that studies of cache protection strategies should consider the perceptual capabilities of the cacher and potential pilferers.European Union’s Seventh Framework Programm

    The Phyre2 web portal for protein modeling, prediction and analysis

    Get PDF
    Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission
    corecore