1,777 research outputs found

    Exercise-induced respiratory muscle work: Effects on blood flow, fatigue and performance

    Get PDF
    This is the post print version of this article. The official published version can be obtained from the link below.In healthy subjects, heavy intensity endurance exercise places substantial demands on the respiratory muscles as breathing frequency, ventilation and the work of breathing rise over time. In the highly trained subject working at high absolute work rates, the ventilatory demand often causes varying degrees of expiratory flow limitation, sometimes accompanied by lung hyperinflation and, therefore, increased elastic work of breathing. Time-dependant increases in effort perceptions for both dyspnea and limb discomfort accompany these increased ventilatory demands. Similar responses to endurance exercise but at much lower exercise intensities also occur in patients with COPD and CHF. Note that these responses significantly influence exercise performance times in both health and disease. This effect was demonstrated by the marked reductions in the rate of rise of effort perceptions and the enhanced exercise performance times elicited by unloading the respiratory muscles using pressure support ventilation or proportional assist mechanical ventilation. In healthy fit subjects, unloading the inspiratory work of breathing by about one half increased performance by an average of 14% (Harms et al. 2000), and in CHF and COPD patients performance time more than doubled with respiratory muscle unloading (O’Donnell et al. 2001). Why are effort perceptions of limb discomfort markedly reduced and exercise performance increased when the respiratory muscles are unloaded? Our hypothesis is shown in Fig. 1

    Whole egg consumption and cortical bone in healthy children

    Get PDF
    Eggs contain bioactive compounds thought to benefit pediatric bone. This cross-sectional study shows a positive link between childhood egg intake and radius cortical bone. If randomized trials confirm our findings, incorporating eggs into children's diets could have a significant impact in preventing childhood fractures and reducing the risk of osteoporosis. INTRODUCTION: This study examined the relationships between egg consumption and cortical bone in children. METHODS: The cross-sectional study design included 294 9-13-year-old black and white males and females. Three-day diet records determined daily egg consumption. Peripheral quantitative computed tomography measured radius and tibia cortical bone. Body composition and biomarkers of bone turnover were assessed using dual-energy X-ray absorptiometry and ELISA, respectively. RESULTS: Egg intake was positively correlated with radius and tibia cortical bone mineral content (Ct.BMC), total bone area, cortical area, cortical thickness, periosteal circumference, and polar strength strain index in unadjusted models (r = 0.144-0.224, all P < 0.050). After adjusting for differences in race, sex, maturation, fat-free soft tissue mass (FFST), and protein intakes, tibia relationships were nullified; however, egg intake remained positively correlated with radius Ct.BMC (r = 0.138, P = 0.031). Egg intake positively correlated with total body bone mineral density, BMC, and bone area in the unadjusted models only (r = 0.119-0.224; all P < 0.050). After adjusting for covariates, egg intake was a positive predictor of radius FFST (β = 0.113, P < 0.050) and FFST was a positive predictor of Ct.BMC (β = 0.556, P < 0.050) in path analyses. There was a direct influence of egg on radius Ct.BMC (β = 0.099, P = 0.035), even after adjusting for the mediator, FFST (β = 0.137, P = 0.020). Egg intake was positively correlated with osteocalcin in both the unadjusted (P = 0.005) and adjusted (P = 0.049) models. CONCLUSION: If the positive influence of eggs on Ct.BMC observed in this study is confirmed through future randomized controlled trials, whole eggs may represent a viable strategy to promote pediatric bone development and prevent fractures

    Ionization of Infalling Gas

    Full text link
    H-alpha emission from neutral halo clouds probes the radiation and hydrodynamic conditions in the halo. Armed with such measurements, we can explore how radiation escapes from the Galactic plane and how infalling gas can survive a trip through the halo. The Wisconsin H-Alpha Mapper (WHAM) is one of the most sensitive instruments for detecting and mapping optical emission from the ISM. Here, we present recent results exploring the ionization of two infallling high-velocity complexes. First, we report on our progress mapping H-alpha emission covering the full extent of Complex A. Intensities are faint (<100 mR; EM <0.2 pc cm^-6 but correlate on the sky and in velocity with 21-cm emission. Second, we explore the ionized component of some Anti-Center Complex clouds studied by Peek et al. (2007) that show dynamic shaping from interaction with the Galactic halo.Comment: 4 pages, 2 figures; to appear in proceedings of "The Role of Disk-Halo Interaction in Galaxy Evolution: Outflow vs Infall?" held in Espinho, Portugal during 2008 Augus

    Soil microbial organic nitrogen uptake is regulated by carbon availability

    Get PDF
    AbstractPlants and microorganisms intensely compete for nitrogen (N) at many stages of the terrestrial N cycle. In particular, the dissolved organic N (DON) pool, and competition for low molecular weight dissolved organic N (LMWDON) compounds such as amino acids and peptides (and LMW dissolved organic matter; LMWDOM as a whole) has received significant recent research interest. However, as LMWDON compounds contain both N and carbon (C), a question that remains is whether soil microorganisms are primarily taking up LMWDON mainly for the C or the N contained therein. We investigated microbial uptake rates of the model peptide l-trialanine as a rapidly cycling LMWDON compound in temperate grassland soils of differing fertility using 14C labelling to assess how soil fertility status influenced microbial uptake of LMWDON. We then imposed an excess of C as glucose and/or N as NH4Cl to ask whether the uptake of the peptide was affected by C or N excess. Our results demonstrate that l-trialanine is taken up rapidly from the soil solution (t½ < 1.5 min), and that an excess of C, rather than N, resulted in a reduced uptake of the peptide. From this, we conclude that LMWDON is taken up primarily to fulfil the C requirement of soil microorganisms, indicating that they exist in a C-limited state, and are able to respond quickly to a transient influx of an easily metabolisable resource

    Crystal chemistry search of multiferroics with the stereochemically active lone pair

    Full text link
    On the basis of our previous studies of magnetoelectric ordering of BiFeO3, TbMnO3, TbMn2O5 and BiMn2O5 we formulate the crystal chemistry criteria for the search of multiferroics and reveal potential multiferroics Pb2Cu(OH)4Cl2, Pb5Cr3F19, Mn(SeO3){\dot}H2O and BiPbSr2MnO6 each containing the ion with a lone pair.Comment: 4 pages, 8 figures,submitted to J Supercond Nov Mag

    Nuclear structure of Ac-231

    Get PDF
    The low-energy structure of 231Ac has been investigated by means of gamma ray spectroscopy following the beta-decay of 231Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a mini-orange electron spectrometer. The decay scheme of 231Ra --> 231Ac has been constructed for the first time. The Advanced Time Delayed beta-gamma-gamma(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus

    Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry

    Full text link
    In this paper we examine the role of crystal chemistry factors in creating conditions for formation of magnetoelectric ordering in BiFeO3. It is generally accepted that the main reason of the ferroelectric distortion in BiFeO3 is concerned with a stereochemical activity of the Bi lone pair. However, the lone pair is stereochemically active in the paraelectric orthorhombic beta-phase as well. We demonstrate that a crucial role in emerging of phase transitions of the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order types belongs to the change of the degree of the lone pair stereochemical activity - its consecutive increase with the temperature decrease. Using the structural data, we calculated the sign and strength of magnetic couplings in BiFeO3 in the range from 945 C down to 25 C and found the couplings, which undergo the antiferromagnetic-ferromagnetic transition with the temperature decrease and give rise to the antiferromagnetic ordering and its delay in regard to temperature, as compared to the ferroelectric ordering. We discuss the reasons of emerging of the spatially modulated spin structure and its suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table

    Thick de Sitter 3-Branes, Dynamic Black Holes and Localization of Gravity

    Full text link
    The embedding of a thick de Sitter 3-brane into a five-dimensional bulk is studied, assuming a scalar field with potential is present in the bulk. A class of solutions is found in closed form that can represent a thick de Sitter 3-brane interpolating either between two dynamical black holes with a RĂ—S4R \times S_{4} topology or between two Rindler-like spacetimes with a R2Ă—S3R_{2}\times S_{3} topology. The gravitational field is localized in a small region near the center of the 3-brane. The analysis of graviton fluctuations shows that a zero mode exists and separates itself from a set of continuous modes by a mass gap. The existence of such a mass gap is shown to be universal. The scalar perturbations are also studied and shown to be stable.Comment: the study of scalar perturbations and some relevant references have been added. The most used definition for mass in de Sitter space has been adopte
    • …
    corecore