321 research outputs found

    Fluctuations of the Retarded Van der Waals Force

    Get PDF
    The retarded Van der Waals force between a polarizable particle and a perfectly conducting plate is re-examined. The expression for this force given by Casimir and Polder represents a mean force, but there are large fluctuations around this mean value on short time scales which are of the same order of magnitude as the mean force itself. However, these fluctuations occur on time scales which are typically of the order of the light travel time between the atom and the plate. As a consequence, they will not be observed in an experiment which measures the force averaged over a much longer time. In the large time limit, the magnitude of the mean squared velocity of a test particle due to this fluctuating Van der Waals force approaches a constant, and is similar to a Brownian motion of a test particle in an thermal bath with an effective temperature. However the fluctuations are not isotropic in this case, and the shift in the mean square velocity components can even be negative. We interpret this negative shift to correspond to a reduction in the velocity spread of a wavepacket. The force fluctuations discussed in this paper are special case of the more general problem of stress tensor fluctuations. These are of interest in a variety of areas fo physics, including gravity theory. Thus the effects of Van der Waals force fluctuations serve as a useful model for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure

    Coordinating Pricing and Empty Container Repositioning in Two-Depot Shipping Systems

    Get PDF
    This paper studies joint decisions on pricing and empty container repositioning in two- depot shipping services with stochastic shipping demand. We formulate the problem as a stochastic dynamic programming (DP) model. The exact DP may have a high-dimensional state space due to in-transit containers. To cope with the curse of dimensionality, we develop an approximate model where the number of in-transit containers on each vessel is approxi- mated with a fixed container flow predetermined by solving a static version of the problem. Moreover, we show that the approximate value function is L♮-concave, thereby characterizing the structure of the optimal control policy for the approximate model. With the upper bound obtained by solving the information relaxation-based dual of the exact DP, we numerically show that the control policies generated from our approximate model are close to optimal when transit times span multiple periods

    Gravitational reheating in quintessential inflation

    Full text link
    We provide a detailed study of gravitational reheating in quintessential inflation generalizing previous analyses only available for the standard case when inflation is followed by an era dominated by the energy density of radiation. Quintessential inflation assumes a common origin for inflation and the dark energy of the Universe. In this scenario reheating can occur through gravitational particle production during the inflation-kination transition. We calculate numerically the amount of the radiation energy density, and determine the temperature TT_* at which radiation starts dominating over kination. The value of TT_* is controlled by the Hubble parameter H0H_0 during inflation and the transition time Δt\Delta t, scaling as H02[ln(1/H0Δt)]3/4H_0^2 [\ln(1/H_0\Delta t)]^{3/4} for H0Δt1H_0 \Delta t \ll1 and H02(H0Δt)cH_0^2 (H_0 \Delta t)^{-c} for H0Δt1H_0\Delta t \gg 1. The model-dependent parameter cc is found to be around 0.5 in two different parametrizations for the transition between inflation and kination.Comment: 12 pages, 5 figure

    Effects of magnetic field orientations in dense cores on gas kinematics in protostellar envelopes

    Get PDF
    Theoretically, misalignment between the magnetic field and rotational axis in a dense core is considered to be dynamically important in the star formation process, however, extent of this influence remains observationally unclear. For a sample of 32 Class 0 and I protostars in the Perseus Molecular Cloud, we analyzed gas motions using C18O data from the SMA MASSES survey and the magnetic field structures using 850 μm polarimetric data from the JCMT BISTRO-1 survey and archive. We do not find any significant correlation between the velocity gradients in the C18O emission in the protostellar envelopes at a 1,000 au scale and the misalignment between the outflows and magnetic field orientations in the dense cores at a 4,000 au scale, and there is also no correlation between the velocity gradients and the angular dispersions of the magnetic fields. However, a significant dependence on the misalignment angles emerges after we normalize the rotational motion by the infalling motion, where the ratios increase from ≲1 to ≳1 with increasing misalignment angles. This suggests that the misalignment could prompt angular momentum transportation to the envelope scale but is not a dominant factor in determining the envelope rotation, and other parameters, like mass accretion in protostellar sources, also play an important role. These results remain valid after taking into account projection effects. The comparison between our estimated angular momentum in the protostellar envelopes and the sizes of the known protostellar disks suggests that significant angular momentum is likely lost between radii of ∼1,000-100 au in protostellar envelopes

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure

    Measurement of the Bottom contribution to non-photonic electron production in p+pp+p collisions at s\sqrt{s} =200 GeV

    Get PDF
    The contribution of BB meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in p+pp+p collisions at s=\sqrt{s} = 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted BB decay contribution is approximately 50% at a transverse momentum of pT5p_{T} \geq 5 GeV/cc. These measurements constrain the nuclear modification factor for electrons from BB and DD meson decays. The result indicates that BB meson production in heavy ion collisions is also suppressed at high pTp_{T}.Comment: 6 pages, 4 figures, accepted by PR
    corecore