
Coordinating Pricing and Empty Container Repositioning in

Two-Depot Shipping Systems

Tao Lu1, Chung-Yee Lee ∗2, and Loo-Hay Lee3

1Rotterdam School of Management, Erasmus University, The Netherlands

2Department of Industrial Engineering and Decision Analytics, The Hong Kong

University of Science and Technology, Hong Kong

3Department of Industrial and Systems Engineering, National University of Singapore,

Singapore

December 3, 2019

Abstract

This paper studies joint decisions on pricing and empty container repositioning in two-

depot shipping services with stochastic shipping demand. We formulate the problem as a

stochastic dynamic programming (DP) model. The exact DP may have a high-dimensional

state space due to in-transit containers. To cope with the curse of dimensionality, we develop

an approximate model where the number of in-transit containers on each vessel is approxi-

mated with a fixed container flow predetermined by solving a static version of the problem.

Moreover, we show that the approximate value function is L♮-concave, thereby characterizing

the structure of the optimal control policy for the approximate model. With the upper bound

obtained by solving the information relaxation-based dual of the exact DP, we numerically

show that the control policies generated from our approximate model are close to optimal

when transit times span multiple periods.

Key words: Empty container repositioning; dynamic pricing; Markov decision process;

L♮-concavity; approximate dynamic programming; duality.

1 Introduction

Transportation services usually feature demand imbalance in opposite directions, which in-

evitably leads to unbalanced allocations of empty equipment in different locations. In ocean
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container transport, the trade imbalance has been worsening in recent decades. Based on the

data from 2007 to 2012, Figure 1 shows how severe the trade imbalance is in the Europe-Asia and

transpacific shipping routes, two major connections for global supply chains. In order to meet

demand with sufficient empty containers in each service direction, ocean liners must redistribute

their capacities by repositioning empty containers: Besides laden containers, empty containers

must be moved from surplus areas to deficit areas. According to Fuller (2006), out of every 100

containers shipped from Asia to North America, 60 were sent back empty; on Asia-Europe routes,

41% went back to Asia empty. Furthermore, trade imbalance also has a significant impact on

freight rates. De Oliveira (2014) reports that trade imbalance is an important factor driving the

different freight rates for inward and outward journeys in a given itinerary. It is hence necessary

to develop an integrated framework incorporating both repositioning and pricing decisions, in

order to analyze their underlying interactions.
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Figure 1: Containerized trade demands (in million TEUs) on two major shipping routes from
2007 to 2011 (Source: Song and Dong, 2015)

In this paper, we develop a stochastic dynamic programming (DP) model for two-depot ship-

ping systems in which head-haul and back-haul shipping demands are random and endogenously

affected by freight rates. The control variables include repositioning quantities and the pric-

ing decisions for the voyages in both directions. In line with the literature on dynamic empty

container management (e.g., Song, 2007; Ng et al., 2012), we focus on shipping routes consist-

ing of two ports. According to Song (2007), among 1521 regular shipping services recorded by

Containerization International Online, 253 are two-port shuttle services. Moreover, the two-port

services can be considered as a macro-level approximation of intercontinental shipping services.

For instance, the ocean liners on trans-Pacific shipping lanes are mostly concerned about the

trade imbalance between two major geographic regions, i.e., Asia and North America. View-

ing each port as a region, one can still apply our model to manage trans-Pacific routes on an
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aggregate level.

When the transit time spans multiple periods, the exact DP model has to track the in-transit

containers on every vessel, leading to a high-dimensional state space. Thus, the exact model is

generally intractable due to the curse of dimensionality. To circumvent this difficulty, we develop

an approximate formulation which requires only three state variables, regardless of how long the

transit time is. The idea is to use some fixed number of in-transit containers to approximate

the value function. The fixed number can be predetermined as the optimal container flow in a

deterministic and static version of the problem.

Inspired by the recent applications of L♮-convexity/concavity in the inventory literature (e.g.,

Zipkin, 2008), we prove that the approximate value function is L♮-concave in a transformed

state space. The L♮-concavity implies the monotonicity of the optimal solution in some of

the model parameters, which enables us to characterize the interdependence between pricing

and repositioning decisions. We show that the optimal prices for the approximate model are

monotone in the inventory position which is defined as the number of containers at a port plus

those in transit to this port. The monotone properties not only can provide general guidance

for coordinating pricing with empty container management, but also can be used to reduce the

search space for the optimal policies. In addition, we derive the structure of the optimal policies

for the approximate model, which gives guidelines for the match-back policies adopted in practice

(c.f. Lam et al., 2007). In particular, we find that it is not always optimal to maintain the flow

conservation, i.e., to equate the container inflow and outflow at a port by repositioning empty

containers.

To quantity the performance of our approximation, we construct an upper bound of the exact

DP with the information relaxation-based duality technique (Brown et al., 2010). With this

computable upper bound, we demonstrate that our approximation can generate close-to-optimal

solutions and the average optimality gap is less than 2% in a variety of instances. In addition,

we numerically show that the value of coordinating pricing with empty container management

increases as demand imbalance escalates.

The contributions of this paper are summarized as follows: (1) To the best of our knowledge,

this is the first paper that studies joint pricing and empty container repositioning decisions

in a stochastic and dynamic environment. (2) We develop a novel approximation approach

to overcome the curse of dimensionality arising from in-transit containers. (3) The structure

of the approximate optimal policies is analytically characterized. (4) From a methodological

perspective, we provide new applications of L♮-concavity and the information relaxation-based

duality in the domain of maritime transportation.
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The remainder of the paper is organized as follows. Section 2 reviews the literature. Section

3 describes the exact DP formulation. Section 4 presents the approximate model and analytical

results. Section 5 introduces the upper bound of the exact model and Section 6 reports numerical

results. Section 7 discusses several extensions and Section 8 concludes.

2 Literature Review

Empty container repositioning has long been studied in the transportation literature separately

from pricing decisions. Crainic et al. (1993) propose time-space network models for the empty

container allocation problem in an inland transportation system consisting of seaports, inland

storage locations and customer sites. Cheung and Chen (1998) consider an ocean transportation

network with demand uncertainty and develop a two-stage stochastic programming. Erera et al.

(2009) adopt robust optimization techniques to address the problem in a two-stage planning

framework. In addition to uncertain demand and supply, Long et al. (2012) further take into

account the uncertainty in vessels’ weight and space capacity and solve the problem using a two-

stage stochastic programming. Although the above papers consider more complicated networks

(with more than two ports) than ours, their two-stage stochastic programming frameworks as-

sume that all uncertainties are resolved in the second stage. In reality, however, the management

of empty containers is a dynamic process where demand uncertainties are sequentially resolved.

Some authors have studied dynamic empty container management without pricing using

stochastic dynamic programming. Li et al. (2004) consider a single port and characterize the

optimal repositioning policy, based on which Li et al. (2007) further develop a heuristic for multi-

port systems. Lam et al. (2007) propose a dynamic programming formulation that minimizes the

long-run average cost. More closely related to our work is the seminal paper by Song (2007) in

which the author models two-port shipping systems based on a periodic-review inventory control

framework. In the case of container shortfall, additional containers are leased for emergency.

Ng et al. (2012) study a similar model but unsatisfied demand is backlogged. In these papers,

however, shipping demands are assumed exogenous and hence pricing decisions are not addressed.

Moreover, the models in Lam et al. (2007), Song (2007) and Ng et al. (2012) have implicitly

assumed that the transit time between two ports is much shorter than one decision period so

that their dynamic programming models have only a single state variable. In this paper, we

fully relax this assumption and allow for multi-period transit times. This, however, leads to a

high-dimensional stochastic DP which is generally intractable. A novel approximation approach

is then proposed to reduce the state dimension and provide close-to-optimal solutions.

It is worth noting that several studies have attemped to address pricing decisions with stylized

4



deterministic models. Zhou and Lee (2009) study a Bertrand competition between two ocean

liners operating two-port services. Empty containers must be repositioned in order to offset the

imbalance of demands in the two directions. Recently, Chen et al. (2016) extend the framework

of Zhou and Lee (2009) to incorporate waste shipments via empty repositioning. However, both

models are static and neither one takes into account demand uncertainty.

Our work is also related to the literature on vehicle repositioning in fleet management. Gor-

man (2001) and King and Topaloglu (2007) assume that the number of loads on a traffic lane is

a deterministic function of price and the decision maker jointly determines the price charged for

each traffic lane and the number of vehicles to be relocated within the network. Topaloglu and

Powell (2007) further capture demand uncertainty and model the joint optimization problem

as a stochastic dynamic pricing problem. Our problem is different from the models in the fleet

management literature in that our objective function includes container-based operating costs

(i.e., storage and leasing costs) which are nonlinear and mirror the overage and underage costs

in inventory management.

Our paper can also be positioned in the literature on inventory management with pricing.

Thowsen (1975), Federgruen and Heching (1999) and Chen and Simchi-Levi (2004) are the

representative works along this line. We refer interested readers to the comprehensive survey

articles such as Elmaghraby and Keskinocak (2003), Chen and Simchi-Levi (2012) and Chen

and Chen (2015). Because of several salient features of empty containers manage, our model

departs from ordinary inventory models in several ways. First, after satisfying demand, the

stock of traditional commodities is consumed, whereas empty containers are still available (at

the other location). Second, in the liner service, the pricing decision for one voyage affects not

only the inventory level at the origin port but also that at the destination port. Third, instead

of periodically replenishing inventory through an outside source, in our problem the ocean liner

determines how to redistribute empty containers within the system.

3 The Model

We consider an ocean liner providing transportation services between two ports in a finite plan-

ning horizon divided into T periods. The transit time between the two ports is L periods where

L ≥ 1 is a positive integer. The liner maintains a one-period service frequency. Since the voyages

in both directions are operated in each period, the liner must deploy 2L vessels on the cyclic

service route to maintain the service frequency. For example, when one period is equal to one

week, the shipping service is operated on a weekly basis. If the transit time is one week, i.e.,

L = 1, two vessels must be deployed on the service route such that there is a vessel departing
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from each port once a week.

The sequence of events is as follows: (1) Prior to the voyages in a period, the liner announces

the prices for both directions; (2) demands are realized and the voyages that commenced L

periods ago arrive at the destination ports; (3) based on realized demands, the liner decides how

many empty containers to be repositioned and then launches new voyages in both directions.

For the t-th voyage (t = 1, 2, ..., T + 1), let dit = random demand from port i to port j and

pit = price charged for the voyage from port i to port j. Throughout the paper, we use indexes

i, j ∈ {1, 2} and i 6= j to indicate the two different ports.

Like Federgruen and Heching (1999) and Chen and Simchi-Levi (2004), we assume pit is

selected from a finite interval [pi
t
, p̄it] where pi

t
(resp. p̄it) is the lowest (resp. highest) feasible

price to be charged.

The expected shipping demand from port i to port j in every period t is a function of pit,

denoted by Di
t(p

i
t). The actual demand dit is assumed to be Di

t(p
i
t) plus an additive random noise

ǫit:

dit = Di
t(p

i
t) + ǫit, (1)

where the ǫit’s are continuous random variables with known distributions and are independent

across periods. Without loss of generality, we assume E[ǫit] = 0 for all i and t. In addition, we

have assumed that the integrality constraints on demands and shipments are negligible. This is

a reasonable assumption when the shipping line manages a large number of containers to meet

substantial demand volumes.

Assumption 1. For all p ∈ [pi
t
, p̄it], t and i, dit = Di

t(p
i
t)+ ǫit is nonnegative, and Di

t(p
i
t) is finite

and strictly decreasing in pit.
1

Let λit be the expected demand from port i to port j in period t and Ai
t(λ

i
t) denote the inverse

demand function, i.e., the inverse function of Di
t(p

i
t). The expected gross revenue can therefore

be written as rit(λ
i
t) = λitA

i
t(λ

i
t). Equivalent to determining pit within [pi

t
, p̄it], we can choose

λit from a given interval [λit, λ̄
i
t]. We make the following assumption: The expected revenue is

concave in the expected demand.2

Assumption 2. For all t and i, rit(λ) is concave and differentiable in λ for λ ∈ [λit, λ̄
i
t].

Note that the demands are realized after the prices are determined but before the number

of empty containers to be repositioned is decided. For the analysis, it is convenient to have

1In the ocean shipping industry, the overall demand generally exhibits a low elasticity. However, individual
carriers can still influence their demand by adjusting the freight rate, especially when there are substitutable
services on the same route.

2Assumption 2 is satisfied by many commonly used demand functions, e.g., linear demand D(p) = a−kp, logit

demand D(p) = ea−kp

1+ea−kp , exponential demand D(p) = ae−kp and log demand D(p) = log(a− kp), where a, k > 0.
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Figure 2: The sequence of events

the random noises realized at the end of each period. To achieve this, we consider events in

(decision) period t as follows: (1) At the beginning of period t, the liner decides the number

of empty containers to be repositioned based on the realized demands for the t-th voyage; (2)

the liner announces pit+1; (3) demands dit+1’s are realized. Figure 2 illustrates this sequence of

events, where the starting and completion times of each voyage are indicated by dashed lines,

since they are not essential to our analysis. For example, the (t−L+1)-th voyage may also end

prior to the announcement of pit+1’s, but all of our results would remain the same.

Laden containers are unloaded immediately upon arrival. Thus, at the beginning of period

t, both laden and empty containers on the most recently completed voyage are available for the

next voyage. Vessel space is assumed to be sufficient, as ocean liners are usually more concerned

about the number of empty containers as the main capacity constraint.

Before a voyage begins, if the realized demand exceeds the volume that can be shipped

with the liner’s own empty container available at a port, additional containers will be leased3

immediately from outside vendors to meet the demand. We assume that the liner can always

lease enough containers to satisfy demands on time.4 The leasing cost is proportional to the

duration of lease. In addition, we also adopt the common assumption in the literature: All

containers are functionally identical, so the liner may return any idle containers to the vendor

(see, for example, Cheung and Chen, 1998; Song, 2007). This assumption implies that in a

location where out-of-system containers are leased, once some containers become idle in that

location, they will be automatically returned to the vendor to shorten the lease duration.5 If

3To avoid confusion, throughout the paper, we refer to these short-term leased containers simply as leased
containers. Ocean liners may also have long-term leased containers, but here we simply treat them as the liner’s
own.

4As mentioned by Cheung and Chen (1998), in reality, ocean liners are seldom unable to find enough containers
from external sources. Therefore, they rarely reject or backlog customer orders.

5In practice, it is prohibitively costly to track every single container due to the huge number of containers
being handled. Tracking and returning exactly every single container that was leased is therefore impossible.
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there are idle containers after the voyage has begun, an inventory holding cost will be incurred

for each idle container per period. The holding cost refers to the expenses incurred for storing

idle containers in the port terminal/inland container yard.6

Accordingly, define the following cost parameters for each period t:

bit = leasing cost per period for one unit of container at port i;

hit = inventory holding cost per period for one unit of container at port i;

cft = one-time cost for handling one unit of laden container on the t-th voyage;

cet = one-time cost for handling one unit of empty container on the t-th voyage.

Assumption 3. cet > hit for all t and i.

The above assumption requires that it be cheaper to hold containers in inland depots than to

load them on board. If this assumption fails, the liner would purposely load empty containers

on board to reduce inventory holding costs incurred in inland depots. This is clearly not common

in reality, as the cost for handling empty containers on a voyage is normally higher than that for

storing them inland. Throughout the paper, we will assume that Assumptions 1-3 are satisfied

unless otherwise specified. Let

uit = number of empty containers to be repositioned from port i to port j on the t-th voyage;

zi0,t = number of available empty containers owned by the liner at the beginning of period

t at port i (note that when location i has a deficit capacity, zit will take a negative value, the

absolute value of which represents the number of containers being leased from location i);

zil,t = number of (both laden and empty) containers in transit that will arrive at port i in

period t+ l, where l = 1, 2, ..., L.

By definition, it follows that

ziL,t = djt + ujt for i, j ∈ {1, 2} and i 6= j (2)

which represents the total number of containers dispatched from port j in period t, including

laden containers (i.e., shipment demand djt ) and empty ones (i.e., ujt ).

The system dynamics are characterized by 2L+ 2 state variables, i.e., inventory levels zl,t =

(z1l,t, z
2
l,t) where l = 0, 1, ..., L− 1 and realized demands dt = (d1t , d

2
t ), together with the following

Even though containers come in different types, e.g., different sizes, given a sufficiently large volume (which we
have implicitly assumed by using continuous variables to count containers), it is reasonable to assume that the
liner can return containers of a particular size once there are idle containers on hand.

6The liner may also face a problem of whether to keep the idle containers in the port terminal or move them
to the inland container yard. This depends on the terminal operator’s pricing scheme for container storage, the
inland transportation cost, etc. See Lee and Yu (2012) for a study pertaining to this issue. In this paper, however,
we do not consider inland container flows and refer to the cost incurred for storing idle containers inland as the
inventory holding cost.
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equations:

zi0,t+1 = zi0,t − zjL,t + zi1,t , i, j ∈ {1, 2} and i 6= j (3)

zil,t+1 = zil+1,t, for i = 1, 2, and l = 1, 2, ..., L − 1 (4)

dit+1 = λit+1 + ǫit+1 for i = 1, 2. (5)

In addition, we assume that the total number of containers owned by the liner, denoted by

N , is fixed during the planning horizon. Hence,
∑2

i=1

∑L−1
l=0 z

i
l,t = N for all t. Consequently, it is

sufficient to use 2L+ 1 state variables to describe the system dynamics. For ease of exposition,

we will continue presenting our model with 2L+2 state variables but use 2L+1 state variables

in the numerical study.

Inventory levels in 

period t

Before the t-th voyage:

During the t-th voyage:

After the t-th voyage:

Figure 3: Dynamics of inventory levels

Figure 3 illustrates how the inventory levels in the two locations evolve over time. We allow

inventory levels to be negative to capture the deficit scenario. That is, zi0,t−u
i
t−d

i
t < 0 indicates

that there are containers being leased at port i. For example, consider N = 30, L = 1 and at

the beginning of period t, z10,t = 10 at port 1 and hence the number of containers at port 2 is

given by z20,t = N − z10,t = 20 since there are no containers in transit when L = 1. During the

t-th voyages, suppose that we ship 15 units of containers in each direction, i.e., z1L,t = z2L,t = 15.

During this voyage, in addition to the 30 units of containers at sea, the inventory level at port

1 equals z10,t − z2L,t = −5, indicating 5 units of containers being leased, and the inventory level

at port 2 is 5. At the end of period t, we will have z10,t+1 = −5 + 15 = 10 at port 1 and

z20,t+1 = N − z10,t+1 = 20 at port 2, as the leased containers at port 1 have been returned once

extra containers become idle.

Let Gi
t(x) = hit · (x)

+ + bit · (x)
−, where (x)+ = max{x, 0} and (x)− = max{−x, 0}. The

leasing and inventory holding costs in period t at port i is then given by Gi
t(z

i
0,t − zjL,t), since

zi0,t − zjL,t represents the inventory level at port i during the t-th period.
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For the timing of cash flow, for simplicity, we assume that the revenue and container handling

costs of a voyage are respectively received and paid at the end of the voyage. The container leasing

and holding costs in period t are incurred once the t-th voyage begins. Let 0 < α ≤ 1 be the

discount factor. The liner’s objective is to maximize the expected total profit over the entire

planning horizon.

We let the expected demands λt+1 = (λ1t+1, λ
2
t+1) and the number of containers loaded on

the t-th voyages zL,t = (z1L,t, z
2
L,t) be the decision variables in period t, where λit+1 ∈ [λit+1, λ̄

i
t+1]

and zjL,t ≥ dit since uit ≥ 0. Define Rt+1(λt+1) =
∑2

i=1[r
i
t+1(λ

i
t+1)− cft+1λ

i
t+1] as the net revenue

from meeting demands on the (t+ 1)-th voyage. We use Jt(z0,t, z1,t, ..., zL−1,t,dt) to denote the

profit-to-go function for period t. For t = 1, 2, ..., T , the DP recursion can then be written as

Jt(z0,t, z1,t, ..., zL−1,t,dt) = max
λt+1,zL,t

ft(zL,t,λt+1, z0,t, z1,t, ..., zL−1,t,dt) + cet · (d
1
t + d2t )

s.t. λit+1 ∈ [λit+1, λ̄
i
t+1], zjL,t ≥ dit, for i = 1, 2,

(6)

where

ft(zL,t,λt+1, z0,t, z1,t, ..., zL−1,t,dt) =αRt+1(λt+1)−
2

∑

i=1

(

cetz
i
L,t +Gi

t(z
i
0,t − zjL,t)

)

+ αEJt+1(z0,t+1, ..., zL−1,t+1,dt+1).

(7)

The state variables in period t + 1, i.e., (z0,t+1, z1,t+1, ..., zL−1,t+1,dt+1), are determined by

decision variables λt+1, zL,t, random noises ǫt and the state variables in period t according to

equations (3), (4) and (5).

In the expression, the net revenue from the (t + 1)-th voyage is counted in period t, which

is given by αRt+1(λt+1). The repositioning cost on the t-th voyage is given by cet
∑2

i=1 u
i
t =

cet

(

∑2
i=1 z

i
L,t −

∑2
i=1 d

i
t

)

where the term cet
∑2

i=1 d
i
t is removed from the reward function ft to

be optimized. As a termination condition, we set JT+1(z0,T+1, z1,T+1, ..., zL−1,T+1,dT+1) =

−
∑2

i=1G
i
T+1(z

i
0,T+1 − diT+1) so that the container holding and leasing costs for the (T + 1)-th

voyages are included but no more voyages start after the (T + 1)-th voyages.

We close the subsection by remarking that Song (2007) has also studied a DP model for two-

depot shipping systems like ours. Our model is more general than his in two important aspects.

First, in Song’s model demand is exogenous and the liner only determines repositioning quantity,

whereas we endogenize the demand by incorporating pricing decisions. Second, unlike our model

where the inventory cost and leasing cost are charged according to the inventory levels during the

voyage, Song counts the costs based on the end-of-voyage inventory positions in each period. In

his model, a single state variable is enough to describe the dynamics, but this formulation is only
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suitable for the case where the transit time is very short relative to one period (i.e., L << 1).

Relaxing this assumption requires a larger state space with 2L+1 state variables. To cope with

the curse of dimensionality, in the next section we will propose an approximate formulation in

which the dimension of the state space can be reduced to three, regardless of the value of L.

4 The Approximate Model

4.1 State Dimension Reduction

Our approximation method aims to reduce the dimension of the state space, which is a major

difficulty in solving the exact DP (6). Following the often used transformation in the inventory

management literature (e.g., Porteus, 2002), we can use the inventory position (i.e., on-hand

inventory level plus orders in transit) to replace the inventory level at each port. In our system,

the inventory position at port i can be defined as xit =
∑L−1

l=0 z
i
l,t, i.e., the number of containers

at port i plus the containers in transit to port i. However, this does not resolve the curse of

dimensionality, as we must still keep track of the in-transit containers on each vessel zil,t during the

recursion to calculate the container leasing and holding costs Gi
t(x

i
t−

∑L−1
l=1 z

i
l,t−z

j
L,t). Moreover,

the number of in-transit containers on each vessel can be dynamically controlled through pricing

and repositioning decisions.

Note that zil,t = djt+l−L + ujt+l−L, i.e., the number of containers sent from port j to port

i in period t + l − L, which depends on the decision variables λt+l−L and uit+l−L. We can

therefore approximate each zil,t with some fixed number z̄il,t = d̄it+l−L + ūit+l−L, where the values

of d̄it+l−L and ūit+l−L can be obtained beforehand by solving some outer optimization problems

with deterministic demand. In particular, we consider the following deterministic problem:

max
λi
t∈[λ

i
t,λ̄

i
t]
Rt(λt)− cet · |λ

1
t − λ2t |, (8)

where the first term captures the net revenue of the t-th voyage and in the second term we

require that the demand imbalance be exactly offset through empty container repositioning at

a unit cost of cet . Problem (8) can be viewed as a static version of our original problem, which

is in the same spirit as that studied in Zhou and Lee (2009). Let λ̄1t and λ̄2t denote the optimal

solution to problem (8). We can then set d̄it+l−L = λ̄it+l−L and ūit+l−L = (λ̄jt+1−L − λ̄it+1−L)
+

and use z̄il,t = d̄it+l−L + ūit+l−L to approximate zil,t. In other words, we use the optimal container

flow derived from the static problem (8) to approximate the number of in-transit containers.7

7Our approximation approach is inspired by Federgruen and Heching (1999, 2002) where the authors propose
the idea of using a fixed price path derived from a deterministic version of the problem to approximate in-transit
inventories.
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We define an approximate cost function

Ĝi
t(x

i
t − zjL,t) = Gi

t(x
i
t −

L−1
∑

l=1

z̄il,t − zjL,t)

and use it to approximate the value function in the exact DP (6). Since x1t + x2t = N for all

t, we will hereafter simply use xt to denote the inventory position at port 1 and the inventory

position at port 2 is then given by N − xt. For t = 1, 2, ..., T , using the relation ziL,t = djt + ujt ,

our approximate DP recursion can be written as

JA
t (xt,dt) = max

λi
t+1

∈[λi
t+1,λ̄

i
t+1

],ui
t≥0

fAt (ut,λt+1, xt,dt)

= max
λi
t+1

∈[λi
t+1,λ̄

i
t+1

],ui
t≥0

{αRt+1(λt+1)− cet · (u
1
t + u2t )

− Ĝ1
t (xt − u1t − d1t )− Ĝ2

t (N − xt − u2t − d2t ) + αEJA
t+1(xt+1,dt+1)},

(9)

where

xt+1 = xt − u1t − d1t + u2t + d2t , (10)

and dt+1 is determined by (5). The termination condition is then rewritten as JA
T+1(xT+1,dT+1) =

−Ĝ1
T+1(xT+1 − d1T+1)− Ĝ2

T+1(N − xT+1 − d2T+1).

Note that the approximate formulation involves three state variables xt, d
1
t and d2t . The

inventory level xt alone is not sufficient because repositioning quantities are determined after

the actual demands are received. That is, the repositioning decision is contingent on d1t and d2t

as well. Intuitively, the ocean liner would reposition fewer (resp. more) containers if the realized

demand in the same direction turns out to be higher (resp. lower).

We can use the optimal control policy for problem (9) as an approximate solution to the

exact DP (6). The merit of our approximate model is that no matter how long the transit time

is, the proposed approximation has only three state variables whereas the exact model needs

2L+ 1 state variables with L-period transit times, with the understanding that one more state

variable increases the state space in an exponential manner! Moreover, if the transit time is one

period, i.e., L = 1, the approximate model is equivalent to the exact formulation (6), since we

only approximate in-transit containers which appear in the value function only when L > 1.

4.2 Analysis of the Approximate Model

Although we have reduced the state space to three dimensions in the approximate model (9), it

remains challenging to analyze the structure of the optimal policy to this model.
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4.2.1 Preliminaries

To derive the monotonicity of optimal policies, we apply the concept of L♮-concavity (e.g., Pang

et al., 2012). Interested readers are referred to Appendix A for formal statements of its definition

and properties. L♮-concavity implies ordinary concavity and supermodularity, thus allowing us

to characterize how the optimal decision is monotonic in multi-dimensional parameters. For

example, if we maximize function g(v, ζ) over ζ ≥ 0 where v is a vector consisting of multiple

parameters, roughly speaking, the L♮-concavity of g(v, ζ) implies that the optimal solution ζ(v)

is nondecreasing in v. In order to obtain the L♮-concavity of the value function, we transform

the original state variables as follows. Define

vt =











0 −1 0

1 −1 0

1 −1 1





















xt

d1t

d2t











=











−d1t

xt − d1t

xt − d1t + d2t











as the new state vector. Note that the state space V = {v : v1 ≤ 0, v2 ≤ v3} forms a lattice, as

the inequality involving more than one variable has exactly two variables with opposite signs (see

Example 2.2.7 in Topkis (1998)). Although this transformation is performed mainly for technical

reasons, the state vector v does have some physical meanings: v2t represents the inventory position

at port 1 deducting the number of containers that have been reserved for the t-th voyage, and

v3t indicates the net inventory position at port 1 after the inbound and outbound containers

reserved for the t-th voyage are taken into account.

Then, define

y1t = v3t − u1t + u2t ,

y2t = y1t + u1t ,

y3t = y1t + λ2t+1.

Note that y1t is a critical variable in our problem, and y1t = xt+1, i.e., it equals the inventory

position at port 1 at the end of the t-th voyage/at the beginning of the (t+1)-th voyage. We will

refer to y1t as the end-of-voyage inventory position (at port 1). Note that the inventory position

at port 2 is simply given by N − y1t .

Accordingly, the approximate DP formulation (9) can be rewritten as

JA
t (vt) = max

(u1
t ,y

1
t ,y

2
t ,y

3
t ,λ

1
t+1

)∈A
{αRt+1(λ

1
t+1, y

3
t − y1t )− cet · (u

1
t + y2t )− Ĝ1

t (v
2
t − u1t )

−Ĝ2
t (N − y2t + v1t ) + αEJA

t+1(vt+1)}+ cetv
3
t , for t = 1, 2, ..., T

(11)
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and, for the last period,

JA
T+1(vT+1) = −Ĝ1

T+1(v
2
T+1)− Ĝ2

T+1(N + v1T+1 − v3T+1), (12)

where the system dynamics translates to

vt+1 =











−λ1t+1 − ǫ1t+1

v3t − u1t + u2t − λ1t+1 − ǫ1t+1

v3t − u1t + u2t − λ1t+1 − ǫ1t+1 + λ2t+1 + ǫ2t+1











= (0, y1t , y
3
t + ǫ2t+1)

T − (λ1t+1 + ǫ1t+1)e.

The action space A = {(u1t , y
1
t , y

2
t , y

3
t , λ

1
t+1) : u1t ≥ 0, y2t ≥ v3t , u

1
t + y1t = y2t , y

3
t − y1t ∈

[λ2t+1, λ̄
2
t+1], λ

1
t+1 ∈ [λ1t+1, λ̄

1
t+1]}. A is nonlattice due to the constraint u1t + y1t = y2t . The

nonlattice structure gives rise to another analytical difficulty, because a generic way to show the

preservation of L♮-concavity (like supermodularity) under maximization requires the constraint

set to be lattice. 8

In this paper, we circumvent the nonlattice structure by dividing the decisions into two stages:

The liner determines firstly the repositioning quantity corresponding to variables u1t , y
1
t and y2t ,

then the prices for the next voyage corresponding to variables λ1t+1 and y3t . In the second-stage

decision, for any given (u1t , y
1
t , y

2
t ), we find that the maximization over λ1t+1 and y3t depends on

other parameters only through y1t . In other words, the pricing decision is made based on the

inventory position for the upcoming voyage, given any repositioning quantities. Define

Ht(y
1
t ) = max

(y3t ,λ
1
t+1

)∈A(y1t )
α{Rt+1(λ

1
t+1, y

3
t −y

1
t )+EJA

t+1[(0, y
1
t , y

3
t + ǫ2t+1)

T −(λ1t+1+ǫ
1
t+1)e]}, (13)

where A(y1t ) = {(y3t , λ
1
t+1) : y

3
t − y1t ∈ [λ2t+1, λ̄

2
t+1], λ

1
t+1 ∈ [λ1t+1, λ̄

1
t+1]}. The function Ht serves

as a key connection between pricing and repositioning decisions.

In the first stage, we solve

JA
t (vt) = max{Ht(y

1
t )− cet (u

1
t + y2t )− Ĝ1

t (v
2
t − u1t )− Ĝ2

t (N − y2t + v1t )}+ cetv
3
t

s.t. y2t = y1t + u1t ,

y2t ≥ v3t , u
1
t ≥ 0.

(14)

8Recently, Chen et al. (2013) identify some sufficient conditions under which the L♮-concavity can be preserved
even when the constraint set is nonlattice. Their results require that the value function is parametrized by two-
dimensional state vectors. Unfortunately, our state vector has three dimensions.
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Eliminating y1t with the equality constraint y2t = y1t + u1t , the feasible region of (14) then

becomes lattice, leading to the first-stage repositioning decision.

JA
t (vt) = max

y2t≥v3t ,u
1
t≥0

{Ht(y
2
t − u1t )− cet · (u

1
t + y2t )− Ĝ1

t (v
2
t − u1t )

− Ĝ2
t (N − y2t + v1t )}+ cetv

3
t

(15)

With the two-stage reformulation defined above, it can be shown that the value function of

our problem is indeed L♮-concave in the transformed state variables. We relegate all technical

proofs to the appendices.

Lemma 1. For t = 1, 2, ..., T + 1, Ht(y) is concave in y, and JA
t (v) is L♮-concave in v.

To establish the L♮-concavity, we have made use of the fact that the pricing decision is affected by

other variables only through y1t . It should be noted that, in general, with a nonlattice constraint

set and a three-dimensional state space, the L♮-concavity may not be preserved. Chen et al.

(2013) have provided a counterexample. Fortunately, we are able to prove the L♮-concavity of

JA
t by exploiting the special structure of our problem. With the two-stage treatment above, the

L♮-concavity of JA
t in fact follows as long as JA

t+1 is jointly concave. From this perspective, the

L♮-concavity is due to the inherent nature of our problem, rather than preservation under the

DP recursion.9

4.2.2 Monotone Properties of the Optimal Policy

The following theorem characterizes the monotone properties of the optimal price vector with

respect to the inventory position, where we denote by λit+1(y) the optimal expected demand from

port i to port j given that the end-of-voyage inventory position at port 1 is equal to y.

Theorem 1. Given any repositioning quantities (u1t , u
2
t ), the optimal price vector (p1∗t+1, p

2∗
t+1)

depends only on y1t = v3t − u1t + u2t , i.e., the end-of-voyage inventory position. Furthermore, for

ω > 0

0 ≤ λ1t+1(y
1
t + ω)− λ1t+1(y

1
t ) ≤ ω,

−ω ≤ λ2t+1(y
1
t + ω)− λ2t+1(y

1
t ) ≤ 0.

That is, p1∗t+1 (resp. p2∗t+1) is nonincreasing (resp. nondecreasing) in y1t with bounded sensitivities.

Theorem 1 implies that the optimal pricing and repositioning quantities should be interdepen-

dent. With more empty containers available at port 1, a lower price should be charged for the

voyage from port 1 to port 2 to attract more demand in that direction. Likewise, a higher price

9We would like to thank Xin Chen for pointing out this issue, which helps us clarify the implications behind
the proof of L♮-concavity.
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should be charged for the reverse direction to reduce the number of laden containers coming

back to port 1. In addition, our results indicate that despite the complex evolution of (laden

and empty) container flows in the system, to determine pt+1, the manager only needs to base

the pricing decision on the inventory position at the end of the t-th voyage.

The following theorem states the monotone properties of the optimal repositioning quantity,

where we denote by u1∗t (xt, d
1
t , d

2
t ) the optimal quantity repositioned from port 1 to port 2 given

any state (xt, d
1
t , d

2
t ). Note that the optimal repositioning quantity from port 2 to port 1 has the

same properties regarding the corresponding state, as we can simply swap the ports’ indices in

the model.

Theorem 2. (i) For any ω > 0, the optimal repositioning quantity u1∗t satisfies

0 ≤ u1∗t (xt, d
1
t , d

2
t + ω)− u1∗t (xt, d

1
t , d

2
t )

≤ u1∗t (xt + ω, d1t , d
2
t )− u1∗t (xt, d

1
t , d

2
t )

≤ u1∗t (xt, d
1
t − ω, d2t )− u1∗t (xt, d

1
t , d

2
t ) ≤ ω.

(ii) Assuming that ω is such that u2∗t = 0 for all states considered in the above inequalities, the

third inequality in part (i) holds with equality, i.e., u1∗t (xt +ω, d1t , d
2
t ) = u1∗t (xt, d

1
t −ω, d2t ). That

is, u1∗t is affected by xt and d1t only through xt − d1t .

Part (i) of Theorem 2 implies that more empty containers should be repositioned from port

1 to port 2, if we have more (resp. less) shipping demand for the voyage in the opposite (resp.

same) direction or more empty containers are available at port 1 at the beginning of voyage. More

interestingly, the repositioning quantity is more (resp. less) sensitive to the number of empty

containers available at the origin port than to the shipping demand in the opposite (resp. same)

direction. Furthermore, all of the sensitivities are bounded by one. Assuming differentiability,

Theorem 2 implies 0 ≤
∂u1∗

t

∂d2t
≤

∂u1∗
t

∂xt
≤ −

∂u1∗
t

∂d1t
≤ 1.

Part (ii) of Theorem 2 states the sensitivities of u1∗t when the perturbation in state variables

does not change the optimal repositioning direction. With a fixed d2t , the repositioning quantity

from port 1 to port 2 will remain the same as long as the term xt − d1t is unchanged, assuming

that the repositioning direction is always from port 1 to port 2 in the optimal solution. That

is, the effect of a higher inventory position at port 1 can be offset by an increase in the demand

from port 1 to port 2.

Our result is in notable contrast to that of Song (2007). In Song (2007), the optimal reposi-

tioning quantity depends only on the end-of-voyage inventory level xt − d1t + d2t . In other words,

the number of empty containers to be repositioned remains unchanged if d1t increases and d2t

decreases by the same amount. In our setting, however, we show that u1∗t is more sensitive to d1t
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than to d2t . The reason is that our model captures the time lag in transporting containers. Intu-

itively, when empty containers need to be shipped from port 1 to 2, d1t affects the repositioning

decision more immediately than d2t , as d2t will not arrive at port 1 until the end of the period.

From the computational perspective, we note that Theorems 1 and 2 can be iteratively

leveraged to dramatically reduce the search space for the optimal decisions. For example, to

solve the DP, we need to find the optimal control for every possible state (xt, d
1
t , d

2
t ). Once

we find u1∗t (xt, d
1
t , d

2
t ) under some state (xt, d

1
t , d

2
t ), it suffices to search for the optimal reposi-

tioning quantity under another state (xt + ω, d1t , d
2
t ) where ω > 0 between u1∗t (xt, d

1
t , d

2
t ) and

u1∗t (xt, d
1
t , d

2
t ) + ω.

4.2.3 The Structure of the Approximate Optimal Policy

As the pricing decision is affected only by the end-of-voyage inventory position y1t , we are inter-

ested in representing the optimal policy in terms of y1∗t where y1∗t = xt − d1t + d2t − u1∗t + u2∗t .

In what follows, we will focus on repositioning decisions, and the optimal prices are determined

once the repositioning quantity is chosen. Let ut be the net repositioning quantity: ut = u1t −u
2
t .

We show in Appendix C that it is not optimal to simultaneously transport empty containers in

both directions. That is, at most one of u1t and u2t is positive. We can hence rewrite problem

(15) as an unconstrained optimization over ut:

max
ut

Ht(v
3
t − ut)−Wt(ut,vt), (16)

where Wt(ut,vt) = cet · |ut|+ Ĝ1
t (v2 − [ut]

+) + Ĝ2
t (N + v1t − v3t − [ut]

−).

It is not difficult to verify that the cost term Wt(ut,v) is piecewise convex in ut. Together

with the concavity of Ht, the first-order condition guarantees the global optimality. To obtain

more explicit characterizations of the optimal policy, we need a mild assumption:

Assumption 4. Over all periods, it is not optimal to lease more empty containers than the

current shortfall and transport the extra ones to the other location.

Assumption 4 excludes the situation where the liner leases extra containers from one location

and repositions them to the other location. This rarely happens in practice because (1) the liner

normally has easy access to container leasing companies in most port regions of the world; and

(2) doing so will incur a significant cost for handling extra empty containers during the voyage.

Clearly, a sufficient condition for Assumption 4 to hold is that the cost parameters cet and bit are

time-invariant and b1t = b2t (i.e., leasing containers in two locations are equally costly).

Under Assumption 4, the optimal net repositioning quantity u∗t must be within the interval
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−(N −xt − d2t )
+ ≤ u∗t ≤ (xt − d1t )

+. We can therefore restrict our attention to the repositioning

quantities that do not exceed the number of on-hand empty containers, excluding those being

reserved for the upcoming voyage. In some sense, we can view −(N−xt−d
2
t )

+ ≤ ut ≤ (xt−d
1
t )

+

as a state-dependent capacity constraint.

Clearly, u∗t = 0 if d1t ≥ xt and d2t ≥ N − xt; u
∗
t ≥ 0 if d1t < xt and d2t ≥ N − xt; u

∗
t ≤ 0 if

d1t ≥ xt and d2t < N − xt. In the above three cases, the repositioning direction is simply due to

the capacity constraint. For the remaining case where d1t < xt and d2t < N − xt, by examining

first-order optimality conditions of (16), we can conclude that there exist two thresholds v̄t and

vt such that (i) u∗t = 0 if vt ≤ v3t ≤ v̄t; (ii) u∗t ≥ 0 when v3t > v̄t; and (iii) u∗t ≤ 0 when v3t < vt.

Recall that v3t = xt − d1t + d2t . The repositioning direction depends on the magnitude of the

realized demand imbalance d1t −d
2
t . Detailed mathematical discussions can be found in the proof

of Theorem 3 in Appendix D.

1

t
d
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t
d

t
x

t
N x-

t t
x v-
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4W

Figure 4: The state segmentation according to the repositioning direction

The overall state space, according to the sign of u∗t , is segmented into four regions below (see

also Figure 4).

Ω1 =







(xt, d
1
t , d

2
t ) :

xt − v̄t ≤ d1t − d2t ≤ xt − vt,

d1t < xt, d
2
t < N − xt







Ω2 =







(xt, d
1
t , d

2
t ) :

d1t − d2t < xt − v̄t,

d1t < xt, d
2
t < N − xt







⋃

{

(xt, d
1
t , d

2
t ) : d

1
t < xt, d

2
t ≥ N − xt

}

Ω3 =







(xt, d
1
t , d

2
t ) :

d1t − d2t > xt − vt,

d1t < xt, d
2
t < N − xt







⋃

{

(xt, d
1
t , d

2
t ) : d

1
t ≥ xt, d

2
t < N − xt

}

Ω4 =
{

(xt, d
1
t , d

2
t ) : d

1
t ≥ xt, d

2
t ≥ N − xt

}

As three state variables are involved, for ease of exposition, we illustrate the state segmen-

tation with a d1t -d
2
t coordinate system where xt takes a fixed value, as shown in Figure 4. In the
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following theorem, we characterize the optimal repositioning quantity in each of the segments Ωi.

The pricing decision is then determined by the end-of-voyage inventory positions xt−d
1
t +d

2
t −u

∗
t .

Theorem 3. Under Assumption 4, for any given state (xt, d
1
t , d

2
t ), the optimal policy can be

characterized by two target inventory positions (s∗Ot, s
∗
It) and a price vector p∗

t+1(y), where y is

the end-of-voyage inventory position. The optimal decision in period t is given by one of the

following cases:

(I) If (xt, d
1
t , d

2
t ) ∈ Ω1

⋃

Ω4, reposition nothing, i.e., u∗t = 0 and charge p∗
t+1(xt − d1t + d2t ).

(II) If (xt, d
1
t , d

2
t ) ∈ Ω2, the net repositioning quantity is given by

u∗t =



















0 if xt − d1t + d2t ≤ v̄t

xt − d1t + d2t − s∗Ot if xt − d1t + d2t > v̄t and d2t < s∗Ot

xt − d1t otherwise.

The optimal price vectors for the above three cases are p∗
t+1(xt − d1t + d2t ), p

∗
t+1(s

∗
Ot) and

p∗
t+1(d

2
t );

(III) If (xt, d
1
t , d

2
t ) ∈ Ω3, the net repositioning quantity is given by

u∗t =



















0 if xt − d1t + d2t ≥ vt

xt − d1t + d2t − s∗It if xt − d1t + d2t < vt and d1t < N − s∗It

−(N − xt − d2t ) otherwise.

The optimal price vectors for the above three cases are p∗
t+1(xt − d1t + d2t ), p∗

t+1(s
∗
It) and

p∗
t+1(N − d1t ).

The structural results provide general guidance for the match-back policy in practice (cf. Lam

et al., 2007). The idea of match-back policies is intuitive, namely, to maintain the flow conserva-

tion at each port, i.e., to equate the container inflow with the outflow. Interestingly, our results

suggest that it is not always optimal to maintain this flow conservation. Theorem 3, which is

illustrated in Figure 5 for fixed xt and different combinations of (d1t , d
2
t ), prescribes when to

pursue flow conservation and to what extent it should be maintained.

In particular, it is optimal to not reposition empty containers and thus forgo flow conservation

when the state variables fall into region (a) in Figure 5. This happens when the realized demand

imbalance is not significant or when both realized demands are so high that no container is

idle at either port. As a substitute instrument, the freight rates p∗
t+1 should be adjusted in

accordance with the actual end-of-voyage inventory position xt− d1t + d2t . In regions (b) and (c),
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Figure 5: The structure of optimal policy (P1: port 1; P2: port 2)

it is optimal to reposition some containers from port 1 to port 2. Our results suggest that there

is a target inventory position s∗Ot while repositioning containers, where subscript “O” represents

“outbound” from the perspective of port 1. In region (b), the optimal outflow from port 1 equals

d1t +u
∗
t = xt+d

2
t −s

∗
Ot, given an inflow of d2t . If the current inventory position is the target level,

i.e., xt = s∗Ot, we just need to equate the outflow with the inflow, i.e., d1t +u
∗
t = d2t . Otherwise, we

should still maintain flow conservation but leave the end-of-voyage inventory position as s∗Ot. In

region (c), demand from port 2 exceeds s∗Ot. It is hence impossible to end up with an inventory

position s∗Ot. In this case, we should dispatch all of the empty containers at port 1, and the

end-of-voyage inventory position will be d2t . Depending on whether or not the target inventory

position is achieved, the optimal freight rates should be either pt+1(s
∗
Ot) or pt+1(d

2
t ). Regions (d)

and (e) mirror regions (b) and (c) except that port 1 is in deficit and the repositioning direction

is reversed. In this case, however, the target inventory position becomes s∗It where the subscript

“I” represents “inbound” from the perspective of port 1.

In addition, it is interesting to contrast our results with the well-developed theories in inven-

tory management. As opposed to the celebrated base-stock policy for single-location inventory

systems, the allocation of empty containers in our system may oscillate between two different

inventory positions, depending on the repositioning direction.

Proposition 1. The target inventory position (at port 1) for outbound repositioning is higher

than that for inbound repositioning, i.e., s∗Ot ≥ s∗It for all t.

Proposition 1 highlights another interesting property: The target inventory position is dependent

on the repositioning direction. When empty containers are transported from port 1 to port 2,
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the target inventory position for port 1 equals s∗Ot; this target level becomes s∗It when empty

containers are shipped from port 2 to port 1. Furthermore, s∗Ot ≥ s∗It. This implies that when

trade is unbalanced, it is optimal to aim for a higher inventory position when the port has a

capacity surplus than when it has a capacity deficit. Proposition 1 implies that it is not eco-

nomical to maintain the same inventory position for both the deficit and surplus scenarios. This

result can be explained by comparing the cost margins for outbound and inbound repositioning.

For outbound repositioning, the cost margin for holding one more unit of inventory at port 1 is

given by −cet + h1t , as it increases the inventory holding cost by h1t but reduces the repositioning

quantity by one unit. The cost margin is actually negative by Assumption 3, which implies

that holding more inventory at port 1 lowers the cost incurred in period t. On the other hand,

for inbound repositioning, increasing one more unit of inventory position at port 1 leads to a

one-unit increase in the repositioning quantity, and a one-unit decrease in the number of idle

containers at port 2. Thus, the cost margin for inbound repositioning is given by cet −h
2
t , which is

greater than that for outbound repositioning. In addition, no matter whether the repositioning

direction is outbound or inbound, the effect of holding one more unit of inventory position at

port 1 on future periods (reflected by the function Ht) is the same. Therefore, it is optimal to

keep a lower inventory position at port 1 when empty containers are repositioned from port 2 to

port 1, as compared to the case when empty containers are repositioned from port 1 to port 2.
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Figure 6: A numerical example of the approximate optimal policy

Figure 6 provides a numerical example10 to illustrate the end-of-voyage inventory positions in

the optimal policy, which validates our analytical result. There are two flat areas in which the

inventory positions are constant. Consistent with Proposition 1, the target inventory positions

for outbound and inbound repositioning are different from each other.

10We consider a two-period problem with N = 150, α = 1, x1 = 80, p12(λ
1
2) = 600 − 4λ1

2, p
2
2(λ

2
2) = 800 − 4λ1

2,
where 30 ≤ λ1

2, λ
2
2 ≤ 100. Other parameters are time-invariant and identical for both ports: ce = 50, cf = 100,

h = 30, b = 80, ǫ ∼ unif [−10, 10].
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Proposition 2. For all t, (i) s∗Ot is increasing in cet and decreasing in h1t ; (ii) s∗It is decreasing

in cet and increasing in h2t ; (iii) consequently, s∗Ot − s∗It is increasing in cet and decreasing in h1t

and h2t .

Proposition 2 states how s∗Ot and s∗It change with repositioning and storage costs. When reposi-

tioning is more expensive, the gap between s∗Ot and s∗It will be larger as it is less economical to

have the same inventory position in both surplus and deficit scenarios. The effect of the holding

cost on s∗Ot− s
∗
It is the opposite, because the gap between the repositioning cost and the holding

cost narrows as hit increases.

We close this section by recapping our key analytical findings and their managerial implica-

tions. As established in Theorems 1 and 3, in addition to repositioning empty containers, pricing

serves as another instrument to cope with demand imbalance. For a port with more excess

containers, the price of its outward voyage would be lower to attract more demand. This result

is consistent with the empirical finding that for European countries that normally have more

imports than exports, inward freight rates are on average 23% higher than for outward ones (cf.

De Oliveira, 2014). Additionally, the structure of the optimal repositioning policy characterized

in Theorem 3 echoes the match-back policy used in practice (see, e.g., Lam et al., 2007) and

we provide conditions under which a simple match back strategy is optimal to our approximate

model.

5 Upper Bounds

To evaluate the performance of the control policy generated by the approximate DP, we need to

find a relatively tight but computable upper bound of the exact value function J1(z0,1, z1,1, ..., zL−1,1,d1),

because solving the exact DP formulation in (6) is extremely time consuming even when L is

small due to the high-dimensional state space.

In this section, we adopt the information relaxation-based duality approach developed in

Brown et al. (2010) to obtain an upper bound of the exact value function. We consider the

perfect information relaxation in which the decision maker in period t is allowed to utilize com-

plete future information, i.e., realizations of random terms ǫt+1,ǫt+2,..., ǫT+1, thus violating the

nonanticipativity constraints. Let Υ = (ǫ̂1, ǫ̂2, ..., ǫ̂T , ǫ̂T+1) denote a randomly generated sample

path of demand noise. Following Brown et al. (2010), we write the dual of the original DP (6)
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as follows:

J̄t(z0,t, z1,t, ..., zL−1,t,dt; Υ) = max

λit+1 ∈ [λit+1, λ̄
i
t+1],

zjL,t ≥ dit for i = 1, 2

{

αRt+1(λt+1)−

2
∑

i=1

(

cetz
i
L,t +Gi

t(z
i
0,t − zjL,t)

)

−πt(zL,t,λt+1, z0,t, z1,t, ..., zL−1,t,dt)

+αJ̄t+1(z0,t+1, ..., zL−1,t+1,λt+1 + ǫ̂t+1,k; Υ)
}

+ cet (d
1
t + d2t ),

(17)

where

πt(zL,t,λt+1, z0,t, z1,t, ..., zL−1,t,dt) = JA
t+1(

L−1
∑

l=0

z1l,t+1,λt+1+ǫ̂t+1,k)−Eǫt+1

[

JA
t+1(

L−1
∑

l=0

z1l,t+1,λt+1 + ǫt+1)

]

.

(18)

In the above DP recursion, the zl,t+1’s are transformed from the zl,t’s according to (3) and (4)

as before, but we allow an imaginary decision maker to use the future information on the sample

path Υ. The function πt, defined as the difference between the approximate value function on the

sample path and its expected value over ǫt+1, serves as the penalty function: A strictly positive

penalty is imposed whenever the future information brings the imaginary decision maker a higher

profit-to-go.11 We note that πt is constructed according to Proposition 2.2 in Brown et al. (2010).

Therefore, the weak duality holds for problem (17) and the expectation of J̄t over Υ provides a

valid upper bound for the exact value function (6).

Theorem 4. For all t = 1, 2, ..., T and any state (z0,t, z1,t, ..., zL−1,t,dt),

Jt(z0,t, z1,t, ..., zL−1,t,dt) ≤ EΥ

[

J̄t(z0,t, z1,t, ..., zL−1,t,dt; Υ)
]

. (19)

In the numerical study, we will use simulation to evaluate the expectation in (19), i.e., solve the

dual problem (17) on a set of randomly generated sample paths and take the average as the

upper bound.

11If we define πt = 0, J̄t is the value function of our original problem when one can benefit more from future
information. Appendix B.1 reports a numerical study that compares the zero-penalty bound with the penalized
one according to (18). We note that, strictly speaking, our bound with zero penalty is different from a perfect-
information upper bound because the per-period reward is calculated based on the expected revenue function
Rt(λ) due to the assumption of additive random noise, rather than the realized revenue on a particular sample
path. In some sense, in estimating our upper bounds, we only partially leveraged the future information for
minimizing operational costs.
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6 Numerical Study

6.1 The Optimality Gap of the Approximation

We quantify the performance of our approximation approach using the upper bound constructed

in Section 5. The dynamic programming algorithms for both the approximate model (9) and the

dual problem (17) were coded in C++ and compiled with the GNU g++ compiler 6.3.0. The

computational experiment in this subsection was conducted on a cluster of Linux workstations

where each workstation was equipped with 64GB RAM and a 2.60GHz processor.

First, we test a set of instances with a two-period transit time (L = 2). In the numerical

experiments with L = 2, we discretized the state space into integer values. More precisely, we

assume that the inventory level at port 1 within a sufficiently large range is between −⌈N/2⌉ and

N + ⌈N/2⌉ and the number of in-transit containers on each vessel is between the lowest possible

demand and ⌊N/2⌋.12 The discretized state space contains all the integer values within these

ranges, together with all the possible integer values of demand dt. We consider a stationary

setting with α = 1, cf = 0.5, h = 0.01 and the ǫit’s being independent and identically distributed

(iid) according to a uniform distribution U [−2, 2]. For notational ease, we suppress the index

t whenever appropriate. We vary other parameters as follows: T ∈ {5, 6}, N ∈ {25, 30, 35},

b ∈ {0.4, 0.6, 0.8}, and ce ∈ {0.2, 0.4, 0.6}. The inverse demand function takes the form Ai(λ) =

ai − λ, where we consider two demand settings with (a1, a2) ∈ {(14, 12), (16, 10)} to simulate

different degrees of demand imbalance. The adjustment range [λi, λ̄i] is set as [λSi − 2, λSi + 2]

where λSi =
ai−cf

2 , denoting the maximizer of the net revenue R(λ) =
∑2

i=1(ai − λi − cf )λi.

The initial state is set as follows. The number of in-transit containers on each vessel is equal to

the optimal container flow in the static problem (8) but the allocation of the idle containers is

varied in two different ways: They are (i) equally split between two ports, or (ii) unequally split

with one quarter at Port 1 and three quarters at Port 2. We label these two setups as “equal”

and “unequal” cases, respectively.

In total, we solved 216 instances with all combinations of the above parameters using our

approximation approach. For each instance, we computed the expected profit under the ap-

proximate control policy, denoted by JApprox
1 , and also evaluated the upper bound, denoted by

JUB
1 , by solving the dual problem (17) on six randomly generated sample paths. The optimality

gap is calculated as
JUB
1 −J

Approx
1

JUB
1

. Table 1 reports a summary of optimality gaps for different

combinations of T , N and initial states, where each combination includes 18 instances. Overall,

the average gap is less than 2%. It is worth noting that with the help of monotone properties

12Recall that the inventory level at port 2 need not be included as a state variable as the total number of
containers is fixed. Additionally, we note that ⌈x⌉ (⌊x⌋) denote rounding up (down) x to the nearest integer.
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Table 1: Performance of the approximate control policy when L = 2

T N
Initial Optimality Gap ( %)

State Average Median Max

5 25 Equal 1.88 1.68 3.12
Unequal 1.96 1.84 3.42

5 30 Equal 0.85 0.91 1.41
Unequal 1.47 1.47 2.36

5 35 Equal 1.12 0.71 3.27
Unequal 0.98 0.96 1.56

6 25 Equal 2.24 2.14 3.80
Unequal 2.59 2.49 5.09

6 30 Equal 1.04 1.03 1.91
Unequal 2.30 2.28 4.08

6 35 Equal 1.73 1.20 4.79
Unequal 1.13 0.99 2.28

derived in Section 4.2.2, our approximate DP can be solved within a few seconds. On the other

hand, in the case of T = 6, depending on the value of N , it can take more than ten hours obtain

the upper bound for a single instance. This suggests that even with L = 2, it is impossible to

solve the exact model within reasonable time, since demand uncertainty would further increase

the size of the exact model exponentially over periods.

Table 2: Performance of the approximate control policy when L = 3

T N
Initial Conservative Opt. Gap ( %)

State Average Median Max

5 30 Equal 4.19 4.08 10.17
Unequal 4.68 2.89 11.46

5 35 Equal 6.52 5.23 8.34
Unequal 5.32 5.24 10.78

5 40 Equal 4.18 7.47 12.23
Unequal 3.60 8.19 14.03

6 30 Equal 3.94 5.04 12.04
Unequal 4.67 5.12 16.78

6 35 Equal 7.26 3.85 13.24
Unequal 6.14 3.41 16.29

6 40 Equal 4.12 2.18 14.53
Unequal 3.15 1.53 15.22

In the second group of experiments, we tested the instances with a three-period transit

time (L = 3). To emulate a longer transit time, we consider N ∈ {30, 35, 40} and (a1, a2) =

{(10, 8), (12, 6)} to have more containers available relative to the per-period demand. Unfortu-

nately, the upper bound becomes much harder to compute due to the exponentially growing state
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space. To estimate the optimality gap within a reasonable time, we further discretized the ranges

of the inventory level and the numbers of in-transit containers into 20 and 5 equidistant points,

respectively.13 The demand dimension still contains all possible integer values. Tables 5 and 6 in

Appendix B report a numerical study suggesting that such discretization has little impact on the

solution quality but would overestimate the optimality gap. As such, our numerical experiments

for L = 3, conducted under the further discretized state space, provides a rather conservative

estimation of the optimality gap. As shown in Table 2, despite being overestimated, the average

and the median of gaps are still reasonably small, and the overall average gap is around 4.8%.14

Finally, we emphasize that we further discretized the state space merely because we need

to compute upper bounds and consistently estimate optimality gaps. It is not necessary to do

so when one is interested only in the approximate optimal policy, as the state dimension of our

approximate model is independent of L and our approximate model can in fact be applied for

even larger L.15 Unfortunately, we are not able to estimate the optimality gaps for L ≥ 4 since

the upper bound is not computable in that case. To test the performance of our approximate

approach with L ≥ 4, more effective way to evaluate the upper bound may need to be developed

and we would leave it for future research.

6.2 The Value of Integrated Decision Making

In this subsection, we investigate the value of coordinating pricing and empty repositioning

decisions in two sets of experiments with stationary and time-variant demands, respective. In

this subsection, the control policies and their performances are all computed under the state

discretization with all integer points.

Stationary Demand. We first focus on a short planning horizon (T = 4) with stationary

demand, to thoroughly explore how the cost and demand parameters influence the value of

coordinating decisions. We assume L = 1 such that our approximation is equivalent to the exact

model. The other parameters are set as follows. Let N = 40 and α = 1. Cost parameters are

time-invariant and identical for two ports: cf = 10, h = 4, b = 15, ce = 12. The inverse demand

function takes a linear form: Ai(λ) = ai − λ. We define ∆a = a1 − a2 to capture the degree of

potential demand imbalance. In the experiment, we will vary ∆a while fixing the total market

size a1+a2 = 80. Random noises ǫit are iid according to a truncated normal distribution N(0, σ)

13In computing the state transition, we chose the nearest point as the next-period state.
14Due to the complexity in computing upper bounds, the gap in each instance was estimated on a limited

number of sample paths. As such, the worst-case performance was largely influenced by unfavorable sample
paths.

15Recall that the original problem with L-period transit times has a state space of 2L + 1 dimensions. By
contrast, the dimension of the state space of our approximate model is always three, independent of the specific
value of L. We can therefore conclude that the computational time for our approximate model will be generally
invariant as L increases.
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over [−5, 5], where σ = 10. The initial state is set as x1 = 20 and d1 = (10, 20). As a benchmark,

suppose that the liner separates the management of empty containers and pricing decisions, and

set λi as λSi for all i. Recall that λS denotes the maximizer of the net revenue R(λ). In each

period, the liner dynamically controls repositioning quantities while fixing λS . We compute the

resulting expected profit, denoted by JS where the superscript S denotes “separate” decision

making.
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Figure 7: The value of joint decision making

We then allow the decision maker to dynamically adjust λi within [λSi −2, λSi +2], coordinating

with the empty repositioning. The expected profit is represented by J∗. We quantify the value

of integrated decision making by the percentage of improvement, J∗−JS

JS . The percentage is

computed under different ∆a, N , ce, b, σ. As shown in Figures 7a, 7b and 7c, the integrated

decision making brings greater value as potential demand imbalance ∆a increases. Moreover,

our results indicate that the value in coping with demand imbalance is amplified when the

liner owns fewer containers, when handling one additional empty container entails a higher cost

ce, or when the leasing rate for short-term containers b is higher. Nevertheless, the impact

of demand uncertainty is ambiguous and depends on the level of ∆a. It is often observed in

single-location inventory control problems that dynamic pricing yields greater improvement over

static pricing when the demand is more volatile (e.g., Federgruen and Heching, 1999). In our
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two-depot shipping system, however, this is only the case when ∆a is close to zero (see Figure

7d). Given a moderate demand imbalance (∆a = 6, 10), demand volatility in fact offsets the

benefit of dynamic pricing for balancing container flows. When demand imbalance is substantial

(∆a ≥ 14), the effect of dynamic pricing on mitigating flow imbalance will become dominant,

and demand volatility will then have little impact on profit improvement.

Time-variant Demand. We examine a long planning horizon T = 52 with two-period transit

times (L = 2) to explore the effects of discounting factor α and demand seasonality. One may

view it as an annual planning with 52 weeks. We assume that the market alternates between high

and low seasons, each season consisting of 13 periods. The inverse demand function in period t

is constructed as follows.

Ai
t(λ) =







(1 + β)ai − λ if period t is in a high season

(1− β)ai − λ if period t is in a low season

where the ai’s can be interpreted as the baseline market potential and β ∈ [0, 1] is a seasonal

factor. Let λS
t = (λ1St , λ2St ) denote the maximizer of Rt(λ), which is time-dependent due to time-

variant demand. For integrated decision making, we assume that the adjustment range of λt is

proportional to the market potential. That is, [λit, λ̄
i
t] is set as [λiSt − 2(1+β), λiSt +2(1+β)] for

each high season and as [λiSt − 2(1− β), λiSt +2(1−β)] for each low season. As in the stationary

demand setting above, we set N = 40 and scale down the demand and cost parameters to

accommodate two-period transit times: The baseline market potential is such that a1+ a2 = 40,

cf = 5 and h = 2. Random noises ǫit are iid according to U [−2, 2]. We fix b = 10, ∆a = 8

but varies ce ∈ {7, 6, 5}, α ∈ {1, 0.8, 0.6, 0.4}, β ∈ {0.1, 0.2, 0.3}. The initial state is set as in

the “equal” case described in Section 6.1. Despite the long planning horizon, our approximate

optimal control policy can be found in about 20 minutes.

Table 3: Effects of discounting factor (α) and demand seasonality (β) on the average value of
integrated decision making

α 0.4 0.6 0.8 1

J∗−JS

JS (%) 34.2 37.7 49.7 55.4

β 0.1 0.2 0.3

J∗−JS

JS (%) 37.1 47.1 48.5

Table 3 summarizes the average values of J∗−JS

JS in the tested instances with different α

and β, where J∗ and JS are the actual profits generated by our approximate optimal policy
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and the separate decision making, respectively.16 On average, our joint optimization model

generates greater value (relative to the separate decision making), as the discounting factor α

increases. Intuitively, a larger α places greater weights on future rewards and so our model,

whereby pricing decisions are forward-looking in consideration of future container allocation,

becomes more attractive. In addition, we observed that on average, the value of integrated

decision making tends to be higher as demand seasonality increases.

7 Extensions

7.1 Dependent Demand

Our analysis does not rely on the independence of ǫ1t and ǫ2t . In each period, the shipping demands

for both head-haul and back-haul voyages may have some dependent structure. For instance,

during a period of economic prosperity, shipping volumes would be large in both directions. Thus,

the results can readily be extended to the case where ǫ1t and ǫ2t are dependent. Furthermore, recall

that if a random vector X = (X1,X2) is smaller than another random vector X̂ = (X̂1, X̂2) in

the supermodular order, written as X ≤sm X̂, then X̂1 and X̂2 are more positively dependent

than X1 and X2 (Shaked and Shanthikumar, 2007). Proposition 3 proves that when the random

noises in opposite directions are more positively dependent, the value of the profit-to-go function

(and hence the expected total profit) increases.

Proposition 3. For all t, if ǫt+1 ≤sm ǫ̂t+1, i.e., the random vector ǫ̂t+1 = (ǫ̂1t+1, ǫ̂
2
t+1) is larger

than ǫt+1 = (ǫ1t+1, ǫ
2
t+1) in the supermodular order, then JA

t (vt; ǫt+1) ≤ JA
t (vt; ǫ̂t+1).

Intuitively, the positive dependence between the head-haul and back-haul demands reduces

the difficulty of balancing container flows to some degree, which enables the liner to obtain a

higher expected profit. In addition, demand may also be dependent over time. Our model can

be extended to incorporate this dependence by introducing Markov-modulated demand, a widely

used modeling technique in the inventory literature (see, e.g., Sethi and Cheng, 1997).

7.2 External Container Flows

In reality, a two-port system can be a sub-system of the entire shipping network operated by

an ocean liner. As a result, in addition to the container flows between the two ports, each port

may have external inbound or outbound container flows due to other shipping routes. We can

model the external flows as a Markov process ξt = (ξ1t , ξ
2
t ), where ξit denotes the number of

16We focus on the average value of J∗
−JS

JS here because J∗
−JS

JS may not be strictly monotone in α or β when
ce is fixed.
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containers arriving and being discharged at port i prior to the t-th voyage. Note that ξit can

also be negative, which indicates that some of empty containers are used (or reserved) for other

external service routes. The total number of containers in the two-port system is no longer fixed

in the presence of external container flows. Let Nt denote the total number of containers in

period t. The approximate DP model can then be adapted to the following:

JA
t (xt,dt, ξt, Nt) = max

λi
t+1

∈[λi
t+1,λ̄

i
t+1

],ui
t≥0

{αRt+1(λt+1)− cet · (u
1
t + u2t )

− Ĝ1
t (xt − u1t − d1t )− Ĝ2

t (Nt − xt − u2t − d2t ) + αE[JA
t+1(xt+1,dt+1, ξt+1, Nt+1)|ξt]},

(20)

where

xt+1 = xt − u1t − d1t + u2t + d2t + ξ1t+1, (21)

Nt+1 = Nt + ξ1t+1 + ξ2t+1. (22)

For any fixed (ξt, Nt), we can apply the same state transformation technique as before. By

similar arguments, it can be shown that JA
t (vt, ξt, Nt) is L♮-concave in vt for any fixed (ξt, Nt).

Therefore, the structural properties of the approximate optimal policy still hold when there are

external container flows entering or leaving the two-port system. Finally, we note that when

the ξt’s are intertemporally independent, the additional state variables can be reduced from the

triplet (ξt, Nt) to a single variable Nt.

7.3 Inland Transportation Time

Our model has ignored the distance between the deep-sea terminal and inland customers,

and so containers can be immediately used to satisfy the next-period demand upon arrival.

In reality, after arriving at a deep-sea terminal, it may take some time for containers to be

transferred to inland customers for unloading/loading. To some extent, our framework can be

adapted to incorporate the inland transportation time by expanding the transit time. Let us

assume that after arrival, it takes one period for each container to be transported to inland

depots, unloaded/loaded at nearby customer sites and sent back for another voyage. If the

inland transportation time is more than one period, the treatment is analogous.17 We can

introduce a dummy “in-transit” location before each voyage ends in our model, as illustrated by

17We note that the inland transportation time can be different for empty and laden containers, as a laden
container spends extra time to be discharged at the receiver’s place before going for new export cargoes. However,
this extra time would be small enough (i.e., less than one period) if the inland transport is well coordinated such
that an unloaded container need not travel too far for new cargoes. Hence, we do not distinguish empty and laden
containers in accounting the hinterland transportation time.
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Inland Depots

Inland Depots

Figure 8: Dynamics of inventory levels

the dotted circles in Figure 8. Each dummy location can represent multiple inland container

depots in close proximity to customers. Consequently, containers arriving in period t can only

be exported (or returned if they are leased) in period t + 2 after unloaded and/or loaded at

customer sites.This adaptation expands the transit time from L to L + 1 periods, and so the

proposed approximate model and our analytical results remain valid. However, in doing so, we

have assumed that the distance between the deep-sea terminal and each inland depot is similar

and that the inland transport is well coordinated. If these assumptions are not satisfied, more

sophisticated models and analyses are needed and we leave this for future research.

8 Concluding Remarks

In this paper, we develop a stochastic DP model that integrates pricing decisions with empty

container management. The exact DP is intractable due to its high-dimensional state space.

Thus, we propose a novel approximation approach whereby the state dimension is reduced to

three. Using the properties of L♮-concavity, we characterize the structure of the approximate

control policy. An upper bound of the exact DP can be obtained by solving the information

relaxation-based dual of the exact DP. Using this upper bound, we numerically show that the

control policies generated by our approximate model perform close to optimal when transit times

span multiple periods.

Our work has limitations. First, we have restricted to the shipping services with two ports or

two regions. In reality, a shipping route may involve more than two ports, which would make the

problem more challenging to solve. Since the two-port model studied in this paper has captured

the key features of managing empty containers in a cyclic shipping route, we conjecture that our

approximation approach can be generalized to more complicated networks with more than two

ports. However, characterizing the structural properties would be far more involved. Second, the

ocean shipping industry is a competitive market, whereas we only considered a single liner that

monopolizes market prices. While Zhou and Lee (2009) and Chen et al. (2016) have developed

stylized deterministic models to study the competition between ocean liners, it remains an open

31



problem to characterize the market equilibrium with uncertain demand.
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Appendices

A L
♮-Concavity

Definition 1 (L♮-Concavity). Let V be a closed convex sublattice of Rn. A function f : V → R

is L♮-concave if the function ψ(v, ζ) = f(v − ζe) where ζ ≥ 0 is supermodular on {(v, ζ) : v ∈

V, ζ ∈ R+,v − ζe ∈ V}.

Lemma A.1 (Pang et al. (2012)). (i) If f(v) is L♮-concave, so is ψ(v, ζ) = f(v − ζe). (ii)

If g(v, ζ) is L♮-concave, so is f(v) = maxζ≥0{g(v, ζ)}. (iii) If g(v, ζ) is L♮-concave, and ζ(v)

denotes the smallest value of ζ ≥ 0 that maximizes g(v, ζ), then ζ(v) is nondecreasing in v but

ζ(v+ ωe) ≤ ζ(v) + ω for ω > 0.

In addition, like supermodularity, L♮-concavity is preserved under positive linear combination

and expectation. Basically, L♮-concavity implies ordinary concavity and supermodularity. As for

L♮-convexity, one can find its properties and applications in inventory problems in Zipkin (2008)

and Huh and Janakiraman (2010). For more discussions on these concepts, we refer interested

readers to Murota (2009) and the literature therein. The following lemma is simple, but will be

used frequently in the analysis in this paper.

Lemma A.2. Let f(x) : R → R be a single variable concave function and (y, z) be a vector from

a sublattice of R2. Then, f(y − z) is L♮-concave in (y, z).

Proof. By definition, it suffices to show that ψ(y, z, ζ) = f [(y − ζ) − (z − ζ)] = f(y − z) is

supermodular in (y, z, ζ). It follows from Lemma 2.6.2(b) in Topkis (1998) that f(y − z) is

indeed supermodular in (y, z).

B Supplementary Numerical Results

B.1 Comparison between Penalized and Non-penalized Upper Bounds

For each instance in the numerical experiments reported in Section 6.1, we computed the upper

bound with zero penalty (i.e., πt = 0). Table 3 presented a comparison between the bounds with

and without the penalty term. On average, imposing a penalty function improves the upper

bound. Since the bounds were estimated on only a few simulated sample paths, the zero-penalty

bound could be tighter in some instances.

B.2 Impact of the Approximate State Space

We refer to the further discretized state space (i.e., the one containing 20 and 5 discrete values for

35



Table 4: Penalized Upper Bounds JUB
1 versus Non-penalized Upper Bounds JUB0

1

T N
Initial (JUB

1 − JUB0
1 )/JUB0

1 (%)

State Average Median Max

L=2 5 25 Equal 0.00 -0.01 0.25
Unequal -0.03 -0.03 0.10

5 30 Equal 0.20 0.19 0.43
Unequal 0.24 0.24 0.47

5 35 Equal 0.33 0.31 0.64
Unequal 0.28 0.26 0.56

6 25 Equal -0.03 -0.01 0.04
Unequal 0.00 -0.03 0.75

6 30 Equal 0.06 0.06 0.22
Unequal 0.17 0.15 0.35

6 35 Equal 0.17 0.14 0.40
Unequal 0.25 0.25 0.43

L=3 5 30 Equal 0.12 0.42 1.62
Unequal 0.33 0.55 1.41

5 35 Equal 0.39 0.55 1.18
Unequal 0.46 0.60 1.14

5 40 Equal 0.37 0.35 0.78
Unequal 0.54 0.57 1.42

6 30 Equal 0.25 0.71 1.81
Unequal 0.33 0.66 1.50

6 35 Equal 0.27 0.29 1.00
Unequal 0.32 0.38 1.03

6 40 Equal 0.25 0.29 0.66
Unequal 0.34 0.36 1.20

the inventory level and in-transit containers on each vessel, respectively) as the “approximate"

state space, as opposed to the all-integer state space (i.e., the one that contains all possible

integer points). We focus on the case of L = 2 such that the upper bound is computable within

a reasonable time. In the experiments, we varied T , N , a1 − a2 and the initial state while fixing

b = 0.6, ce = 0.4 and the other parameters the same as in Section 6.1. For each instance and under

each discretization scheme, we computed the approximate optimal policy, and the profit when

the policy is implemented in the all-integer state space, and the optimal gap estimated under

the corresponding discretization scheme. Table 5 compares the performances and computational

times of the control policies computed under different state-space discretization schemes, and

Table 6 shows the impact of different state-space discretizations on the estimation of optimality

gaps.18

18In Table 5, we use JApprox to denote the profit when the solution obtained in the further discretized state
space is implemented in the all-integer state space, and JAll−Int to denote the profit when the solution is obtained
and also implemented in the all-integer state space as a benchmark. In Table 6, the “Time” columns report the
computational time for estimating the upper bounds on five randomly generated sample path.
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Table 5: Impact of the approximate state space on the solution quality

N a1 − a2 Initial State
Approx. All-Integer

JApprox

JAll−Int (%)
Profit JApprox Time (s) Profit JAll−Int Time (s)

25 2 Equal 457.90 9.42 458.54 18.84 99.86
Unequal 451.36 9.42 453.70 18.89 99.48

25 6 Equal 468.82 9.37 470.73 18.75 99.59
Unequal 461.95 9.38 465.93 18.78 99.15

30 2 Equal 465.01 10.25 465.31 24.89 99.94
Unequal 457.77 10.31 458.13 25.04 99.92

30 6 Equal 478.07 10.23 482.16 24.80 99.15
Unequal 472.05 10.23 476.14 24.93 99.14

35 2 Equal 468.09 10.99 468.62 30.69 99.89
Unequal 459.76 10.99 461.08 30.67 99.71

35 6 Equal 486.13 10.98 486.47 30.65 99.93
Unequal 476.60 11.02 477.86 30.63 99.74

Table 6: Impact of the approximate state space on the estimation of optimality gaps

N a1 − a2
Initial Approx. All-Integer

State Opt. Gap (%) Time (s) Opt. Gap (%) Time (s)

25 2 Equal 0.79 1068.6 0.33 12167.7
Unequal 1.18 1070.8 0.40 12160.9

25 6 Equal 3.24 903.3 2.27 11890.4
Unequal 3.40 897.6 2.29 11880.4

30 2 Equal 1.56 1601.0 0.33 34621.5
Unequal 2.02 1599.0 0.62 34563.8

30 6 Equal 2.25 1408.9 1.26 34819.2
Unequal 2.60 1409.6 1.42 34815.6

35 2 Equal 0.32 1985.3 0.00 61765.0
Unequal 1.02 1980.1 0.46 61409.6

35 6 Equal 1.64 1784.0 0.91 62274.9
Unequal 2.20 1782.3 0.08 62322.6

Average: 1.85 1457.5 0.86 36224.3
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C Technical Lemma

Lemma C.1. For t = 1, 2, ..., T , fAt is jointly concave, and has a finite maximizer (u∗
t ,λ

∗
t+1).

Moreover, u1∗t u
2∗
t = 0.

Proof of Lemma C.1. Clearly, JA
T+1 is jointly concave as Ĝi

T+1 is convex for all i by definition.

Then, it is straightforward to inductively argue that fAt is jointly concave: If JA
t+1 is jointly

concave, so is JA
t . This follows since for all t, the feasible region for (ut,λt+1) is a convex set,

and the concavity is preserved under maximization over a convex set by Theorem A.4 in Porteus

(2002).

We first argue that at most one of u1t and u2t is nonzero. Suppose in the optimal solution

we have u1t ≥ u2t > 0. Let ∆ = u1t − u2t . With a fixed λt+1, let û1t = ∆ and û2t = 0. In view

of (10), xt+1 remains the same with the solution ût, and so does EJA
t+1(xt+1,dt+1). However,

by Assumption 3, the cost terms in (9) are reduced at least by (2cet − h1t − h2t )u
2
t > 0. This

contradicts the optimality of (u1t , u
2
t ).

To establish the existence of the finite maximizer, we show that given any feasible λt+1 and

ujt = 0, limui
t→∞ fAt (ut,λt+1, xt,dt) = −∞. First, note that JA

T+1(x,d) → −∞ as |x| → ∞.

By induction, if lim|x|→∞ JA
t+1(x,d) = −∞, we have lim|x|→∞ JA

t (x,d) = −∞. Now, for all t

and any given state (xt,d), as one of uit goes to ∞, we have three terms in fAt (ut,λt+1, xt,dt)

tending to negative infinity while the other two are finite. Hence, for any fixed λt+1, f
A
t → −∞

as either u1t or u2t goes to infinity. Together with the concavity, this implies u∗
t is finite.

D Proofs of Main Results

Proof of Lemma 1. In view of Lemma A.2, it is easy to verify the L♮-concavity of JA
T+1(v).

By induction, we need to show that if JA
t+1(v) is L♮-concave in v, so is JA

t (v).

First, consider the problem (13). If JA
t+1(v) is L♮-concave, so is JA

t+1[(0, y
1
t , y

3
t + ǫ2t+1)

T −

(λ1t+1 + ǫ1t+1)e]} in (y1t , y
3
t , λ

1
t+1) for any realization of ǫit+1, where we have invoked Lemma

A.1(i). Hence, EJA
t+1[(0, y

1
t , y

3
t + ǫ2t+1)

T − (λ1t+1 + ǫ1t+1)e]} is also L♮-concave in (y1t , y
3
t , λ

1
t+1).

This implies the joint concavity in (y1t , y
3
t , λ

1
t+1). By Assumption 2, Rt+1(λ

1
t+1, y

3
t − y1t ) is also

jointly concave in (y1t , y
3
t , λ

1
t+1), as the composition of affine functions preserves the concavity.

The set {(y1t , y
3
t , λ

1
t+1) : (y

3
t , λ

1
t+1) ∈ A(y1t )} is convex. By Theorem A.4 in Porteus (2002), Ht(y

1
t )

is simply a single-variable concave function.

Next, we consider the problem (15). By definition, it then suffices to show that JA
t (vt − ζe)

is supermodular in (vt, ζ) for ζ ≥ 0. To this end, we first perform the maximization over ut:

JA
t (vt) = max

y2t≥v3t

{Wt(y
2
t , v

2
t )− cety

2
t − Ĝ2

t (N − y2t + v1t )} + cetv
3
t , where Wt(y

2
t , v

2
t ) = max

u1
t≥0

{Ht(y
2
t −
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u1t ) − cetu
1
t − Ĝ1

t (v
2
t − u1t )} − cety

2
t − Ĝ2

t (N − y2t + v1t ). We claim that Wt(y
2
t , v

2
t ) is L♮-concave.

In view of Lemma A.1(ii), it suffices to show that the function inside the maximization is L♮-

concave. By Lemma A.2, Ht(y
2
t − u1t ) and −Ĝ1

t (v
2
t − u1t ) are L♮-concave in (u1t , y

2
t ) and (u1t , v

2
t ),

respectively. Therefore, Ht(y
2
t − u1t )− cetu

1
t − Ĝ1

t (v
2
t − u1t ) is L♮-concave in (u1t , y

2
t , v

2
t ), and so is

Wt(y
2
t , v

2
t ) in (y2t , v

2
t ).

Now, we examine the supermodularity of JA
t (vt − ζe).

JA
t (vt − ζe) = max

y2t≥v3t−ζ
{Wt(y

2
t , v

2
t − ζ)− cety

2
t − Ĝ2

t (N − y2t + v1t − ζ)}+ cet (v
3
t − ζ)

= max
ŷ2t≥v3t

{Wt(ŷ
2
t − ζ, v2t − ζ)− cet ŷ

2
t − Ĝ2

t (N − ŷ2t + v1t )}+ cetv
3
t ,

where we set ŷ2t = y2t+ζ in the last equality. Due to the L♮-concavity of Wt(y
2
t , v

2
t ), Wt(ŷ

2
t −ζ, v

2
t−

ζ) is supermodular in (ŷ2t , v
2
t , ζ). Lemma A.2 implies that −Ĝ2

t (N − ŷ2t + v1t ) is supermodular

in (ŷ2t , v
1
t ). Moreover, {(ŷ2t ,v, ζ) : ŷ

2
t ≥ v3t ,v ∈ V, ζ ≥ 0} forms a lattice. By Theorem 2.7.6 in

Topkis (1998), JA
t (vt − ζe) is supermodular in (vt, ζ).

Proof of Theorem 1. Consider the problem (13). Recall that Rt+1 is defined as two sep-

arable concave functions. By Lemma A.2, the first term Rt+1(λ
1
t+1, y

3
t − y1t ) is hence L♮-

concave in (y1t , y
3
t , λ

1
t+1). By Lemma A.1(i) and Lemma 1, it follows that the second term

EJA
t+1[(0, y

1
t , y

3
t + ǫ2t+1)

T − (λ1t+1 + ǫ1t+1)e] is also L♮-concave in (y1t , y
3
t , λ

1
t+1). Therefore, the

objective function of problem (13) is L♮-concave.

From Lemma A.1(iii), the optimal choice of λ1∗t+1 for any fixed y3t satisfies that λ1∗t+1(y
1
t , y

3
t )

is increasing in (y1t , y
3
t ) and

0 ≤ λ1∗t+1(y
1
t + ω, y3t + ω)− λ1∗t+1(y

1
t , y

3
t ) ≤ ω. (23)

On the other hand, as the constraint set is lattice and L♮-concavity is preserved under max-

imization, the objective function after optimizing over λ1t+1 is L♮-concave in (y1t , y
3
t ). For the

optimal choice of y3∗t , Lemma A.1(iii) implies

0 ≤ y3∗t (y1t + ω)− y3∗t (y1t ) ≤ ω. (24)

By definition, y3∗t (y1t ) = y1t + λ2∗t+1(y
1
t ). Thus, the inequality translates to

−ω ≤ λ2∗t+1(y
1
t + ω)− λ2∗t+1(y

1
t ) ≤ 0.

Now consider the optimal choice of λ1∗t+1(y
1
t ) = λ1∗t+1(y

1
t , y

3∗
t (y1t )). By the monotonicity of
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λ1∗t+1(y
1
t , y

3
t ) and (24), it follows that

λ1∗t+1(y
1
t + ω) = λ1∗t+1(y

1
t + ω, y3∗t (y1t + ω)) ≥ λ1∗t+1(y

1
t , y

3∗
t (y1t )) = λ1∗t+1(y

1
t ).

Likewise,

λ1∗t+1(y
1
t + ω)− λ1∗t+1(y

1
t ) =λ

1∗
t+1(y

1
t + ω, y3∗t (y1t + ω))− λ1∗t+1(y

1
t , y

3∗
t (y1t ))

≤λ1∗t+1(y
1
t + ω, y3∗t (y1t ) + ω)− λ1∗t+1(y

1
t , y

3∗
t (y1t )) ≤ ω,

where the first inequality follows by (24) and the monotonicity of λ1∗t+1(y
1
t , y

3
t ), and the second

equality follows by (23).

As pit+1 is one-to-one mapped from λit+1, the sensitivities of pit+1 immediately follow.

Proof of Theorem 2. The problem (15) can be recast as

JA
t (vt) = max

u1
t≥0

{H̃t(v
1
t , v

3
t , u

1
t )− cetu

1
t − Ĝ1

t (v
2
t − u1t )}+ cetv

3
t , (25)

where H̃t(v
1
t , v

3
t , u

1
t ) = maxy2t≥v3t

{Ht(y
2
t − u1t ) − cety

2
t − Ĝ2

t (N − y2t + v1t )}. Note that H̃t is

L♮-concave in (v1t , v
3
t , u

1
t ). This can be verified as follows:

H̃t[(v
1
t , v

3
t , u

1
t )

T − ζe] = max
y2t≥v3t−ζ

{H(y2t − u1t + ζ)− cety
2
t − Ĝ2

t (N − y2t + v1t − ζ)}

= max
ŷ2t≥v3t

{H(ŷ2t − u1t )− cet ŷ
2
t − Ĝ2

t (N − ŷ2t + v1t )}+ cetζ,

where the last inequality follows by setting ŷ2t = y2t + ζ. The objective is supermodular in

(ŷ2t , v
1
t , v

3
t , u

1
t , ζ) and the feasible region is a lattice. Hence, H̃t[(v

1
t , v

3
t , u

1
t )

T −ζe] is supermodular

in (v1t , v
3
t , u

1
t , ζ).

Therefore, the objective function of problem (25) is L♮-concave in (u1t , v
1
t , v

2
t , v

3
t ). From

Lemma A.1(iii), u1∗t (vt) is nondecreasing in vt and 0 ≤ u1∗t (vt + ωe) − u1∗t (vt) ≤ ω. Trans-

lating 0 ≤ u1∗t (vt + ωe) − u1∗t (vt) ≤ ω with the original state vector, we have u1∗t (xt, d
1
t −

ω, d2t )− u1∗t (xt, d
1
t , d

2
t ) ≤ ω. In addition, as u1∗t (v) is nondecreasing, we have u1∗t (vt) ≤ u1∗t (vt +

(0, 0, ω)T ) ≤ u1∗t (vt+(0, ω, ω)T ) ≤ u1∗t (vt+ωe). This translates to u1∗t (xt, d
1
t , d

2
t ) ≤ u1∗t (xt, d

1
t , d

2
t+

ω) ≤ u1∗t (xt + ω, d1t , d
2
t ) ≤ u1∗t (xt, d

1
t − ω, d2t ), which leads to the first three inequalities in part

(i).

Assuming u2∗t = 0, we have y2t = v3t in the problem (15). The problem then becomes

JA
t (vt) = max

u1
t≥0

{Ht(v
3
t − u1t )− cetu

1
t − Ĝ1

t (v
2
t − u1t )} − Ĝ2

t (N − v3t + v1t ). (26)
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The optimal choice of u1t only depends on v2t and v3t , and the objective function is L♮-concave in

(v2t , v
3
t ). From Lemma A.1(iii), it immediately follows that for ω > 0,

0 ≤ u1∗t (v2t + ω, v3t + ω)− u1∗t (v2t , v
3
t ) ≤ ω.

The inequalities translate to 0 ≤ u1∗t (xt + ω, d1t , d
2
t ) − u1∗t (xt, d

1
t , d

2
t ) = u1∗t (xt, d

1
t − ω, d2t ) −

u1∗t (xt, d
1
t , d

2
t ) ≤ ω. It can be seen that a one-unit increase in xt has the same effect u1∗t as a

one-unit decrease in d1t , and u1∗t will remain unchanged if xt and d1t vary by the same amount.

Proof of Theorem 3. Step 1. We first show the following lemma which establishes the differ-

entiability of Ht(x).

Lemma D.1. Ht(x) is continuously differentiable for all t.

Proof of Lemma D.1. First, we have established that Ht(x) is a concave function. It is known

that if a finite function is convex and differentiable, it is also continuously differentiable (see,

for example, Section 25 in Rockafellar, 1970). Hence, we only need to show that Ht(x) is

differentiable.

Now consider problem (13). By the envelop theorem, the derivative of Ht(y
1
t ) exists as long as

∂EJA
t+1

[(0,y1t ,y
3
t+ǫ2t+1

)T−(λ1
t+1

+ǫ1t+1
)e]

∂y1t
is well defined (because

∂Rt+1(λ1
t+1

,y3t−y1t )

∂y1t
exists by Assumption

2 and the relevant constraint is linear and hence differentiable in y1t ).

To show the differentiability of EJA
t+1 in v2t+1, we will use the following result from Zhu and

Thonemann (2009) (see Claim 4 in their proof of Lemma 1): For continuous functions f(x) and

φ(x), if f(x) is continuously differentiable except on a finite set of points, and the derivative,

whenever it exists, is bounded, then
∫

f(x− ǫ)φ(ǫ)dǫ is continuously differentiable. This result

basically implies that even when f(x) is not differentiable at a finite number of points, the

expectation of f(x − ǫ) over ǫ is differentiable as long as f(x) has a bounded derivative at

differentiable points.

Applying this result, it then remains to show that JA
t+1(vt+1) is differentiable in v2t+1 except

on a finite set of points and its derivative, if it exists, is bounded. This holds for JA
T+1, as

JA
T+1 is differentiable in v2T+1 except at v2T+1 = 0 and |

∂JA
T+1

(vT+1)

∂v2T+1

| ≤ max{h1T+1, b
1
T+1} for

v2T+1 6= 0. For t = 1, 2..., T , applying the envelop theorem in the DP recursion (11), we find that

the derivative of JA
t (vt) with respective to v2t only depends on the term −Ĝ1

t (v
2
t − u1∗t ). Thus,

JA
t (vt) is differentiable in v2t except at v2t = u1∗t , and |

∂JA
t (vt)

∂v2t
| ≤ max{h1t , b

1
t } for v2t 6= u1∗t . That

is, for all t, JA
t (v) is differentiable in v2t except on a finite set of points.

Step 2. We show that according to the repositioning direction, the state space can be divided
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into four segments Ωi, as defined in the main text and illustrated in Figure 4.

By Assumption 4, it clearly follows that u∗t = 0 if d1t ≥ xt and d2t ≥ N −xt; u
∗
t ≥ 0 if d1t < xt

and d2t ≥ N − xt; u
∗
t ≤ 0 if d1t ≥ xt and d2t < N − xt. In the above three cases, the repositioning

direction is simply due to the capacity constraint.

We proceed to scrutinize the remaining case where d1t < xt and d2t < N−xt. By the concavity

of problem (16) and Lemma D.1, it is optimal to reposition nothing if and only if

−H ′
t(v

3
t ) ∈ ∂uWt(0,vt), (27)

where −H ′
t(v

3
t ) is the derivative of Ht(v

3
t − ut) with respect to ut at ut = 0 and ∂uWt(0,vt)

represents the subgradient of Wt with respect to ut at ut = 0. In fact, equation (27) is just

the first-order optimality condition for u∗t = 0. When d1t < xt and d2t < N − xt, the slope of

each piece of Wt(ut,vt) is illustrated in Figure 9. Hence, ∂uWt(0,vt) is given by the interval

[−cet + h2t , c
e
t − h1t ], and the optimality condition translates to u∗t = 0 if and only if −cet + h1t ≤

H ′
t(v

3
t ) ≤ cet − h2t . Recall that H ′

t(v) is nonincreasing by concavity. We can define vt as the

smallest v such that H ′
t(v) ≤ cet − h2t , and v̄t as the largest v such that H ′

t(v) ≥ −cet + h1t ,

where vt ≤ v̄t.
19 By the concavity and optimality condition (27), it follows that u∗t = 0 when

vt ≤ v3t ≤ v̄t; u
∗
t ≥ 0 when v3t > v̄t; and u∗t ≤ 0 when v3t < vt. That is, when d1t < xt and

d2t < N − xt, the repositioning direction depends on the value of v3t = xt − d1t + d2t , and two

thresholds v̄t and vt.
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Figure 9: The slopes of Wt(ut,vt) with respect to ut

Step 3. Having determined the sign of u∗t in each state segment, we are ready to pin down

the specific policies in Ωi.

For segments Ω1 and Ω4, we have shown that the net repositioning quantity u∗t = 0. There-

fore, the end-of-voyage inventory position is simply equal to xt − d1t + d2t . From Theorem 1, the

optimal prices depends only on xt − d1t + d2t , written as pt+1(xt − d1t + d2t ).

19For ease of exposition, in this definition we allow v̄t and vt to take infinite values. For instance, vt = −∞
(resp. +∞) when H ′

t(v) ≤ cet − h2
t (resp. H ′

t(v) > cet − h2
t ) for all v.
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Now we consider Ω2, where the net repositioning quantity u∗t ≥ 0. In view of problem (16) and

Assumption 4, the optimal choice of ut is in effect determined by max 0 ≤ ut ≤ xt − d1t {Ht(v
3
t −

ut)− (cet − h1t )ut}, where we have omitted constant terms in the objective function of (16). Let

y = v3t − ut, denoting the target inventory position. The problem is further reduced to

max
d2t≤y≤v3t

{Ht(y) + (cet − h1t )y} − (cet − h1t )v
3
t .

Let s∗Ot be the (smallest) solution such that H ′
t(s

∗
Ot) = −cet +h

1
t , i.e., s∗Ot is the maximizer to the

unconstrained problem maxy{Ht(y) + (cet − h1t )y}. Therefore, we have three subcases in Ω2:

Subcase 1: v3t ≤ v̄t. As v̄t is the largest value of y such that H ′
t(y) ≥ −cet + h1t , by the

concavity of Ht, we have H ′
t(v

3
t ) ≥ −cet + h1t , which implies s∗Ot ≥ v3t . Therefore, the optimal

solution is attained at the upper bound of y, i.e, y∗ = v3t .

Subcase 2: v3t > v̄t and d2t < s∗Ot. Similar to Subcase 1, for v3t > v̄t, we have s∗Ot < v3t .

Together with d2t < s∗Ot, the interior optimum is attained: y∗ = s∗Ot. That is, u∗t = v3t − s∗Ot.

Subcase 3: v3t > v̄t and d2t ≥ s∗Ot. The optimal solution is attained at the lower bound of y,

i.e, y∗ = d2t . That is, u∗t = v3t − d2t = xt − d1t .

The analysis in Ω3 is analogous. As ut ≤ 0, the optimal choice of ut is essentially determined

by max−(N−xt−d2t )≤ut≤0{Ht(v
3
t − ut) + (cet − h2t )ut}. Replacing ut with y = v3t − ut leads to

max
v3t≤y≤N−d1t

{Ht(y)− (cet − h2t )y}+ (cet − h2t )v
3
t .

Let s∗It denote the (smallest) maximizer to the unconstrained problem maxy{Ht(y) − (cet −

h2t )y}. We have H ′
t(s

∗
It) = (cet − h2t ). Three subcases need to be considered.

Subcase 1: v3t ≥ vt. As vt is the smallest value of y such that H ′
t(y) ≤ cet −h

2
t , by concavity

of Ht, we have H ′
t(v

3
t ) ≤ cet − h2t , which implies s∗Ot ≤ v3t . Therefore, the optimal solution is

attained at y∗ = v3t , namely, u∗t = 0.

Subcase 2: v3t < vt and N − d1t > s∗It. Similar to the discussion in Subcase 1, for v3t < vt,

we have s∗Ot > v3t . Together with N −d1t ≥ s∗Ot, the interior optimum is attained: y∗ = s∗It. That

is, u∗t = v3t − s∗It.

Subcase 3: v3t > vt and N − d1t ≤ s∗It. The optimal solution is attained at y∗ = N − d1t .

That is, u∗t = v3t − (N − d1t ) = −(N − xt − d2t ).

The corresponding pricing decisions are determined by the values of y∗.

Proof of Proposition 1. As defined in the proof of Theorem 3, s∗Ot and s∗It are the solutions

to unconstrained problems maxy{Ht(y)+(cet −h
1
t )y} and maxy{Ht(y)−(cet −h

2
t )y}. This implies

that H ′
t(s

∗
Ot) ≤ H ′

t(s
∗
It). Hence, s∗Ot ≥ s∗It by the concavity of Ht.
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Proof of Proposition 2. The proposition follows immediately from the concavity of Ht and

the first-order optimality conditions: Ht(s
∗
Ot) + (cet − h1t ) = 0 and Ht(s

∗
It)− (cet − h2t ) = 0.

Proof of Proposition 3. As we know, if two n-dimensional random vectors X and Y satisfy

X ≤sm Y, then E[ψ(X)] ≤ E[ψ(Y)] for any supermodular function ψ : Rn → R. Recall that the

transformed DP recursion is given by

JA
t (vt; ǫt+1) = max

(u1
t ,y

1
t ,y

2
t ,y

3
t ,λ

1
t+1

)∈A
{αRt+1(λ

1
t+1, y

3
t − y1t )− cet (u

1
t + y2t )− Ĝ1

t (v
2
t − u1t )

− Ĝ2
t (N − y2t + v1t ) + αEJA

t+1((0, y
1
t , y

3
t + ǫ2t+1)

T − (λ1t+1 + ǫ1t+1)e) + cetv
3
t .

For any fixed (u1t , y
1
t , y

2
t , y

3
t , λ

1
t+1), J

A
t+1 is supermodular in any realization of ǫt+1. This

follows by the L♮-concavity of JA
t+1 (from Lemma 1). Then we can write JA

t (vt; ǫt+1) as

JA
t (vt; ǫt+1) = E[ψ(u1∗t , y

1∗
t , y

2∗
t , y

3∗
t , λ

1
t+1,vt; ǫt+1)],

where the superscript ∗ indicates the optimal solution given ǫt+1. It follows that

JA
t (vt; ǫt+1) = E[ψ(u1∗t , y

1∗
t , y

2∗
t , y

3∗
t , λ

1∗
t+1,vt; ǫt+1)]

≤ E[ψ(u1∗t , y
1∗
t , y

2∗
t , y

3∗
t , λ

1∗
t+1,vt; ǫ̂t+1)]

≤ max
(u1

t ,y
1
t ,y

2
t ,y

3
t ,λ

1
t+1

)∈A
E[ψ(u1t , y

1
t , y

2
t , y

3
t , λ

1
t+1,vt; ǫ̂t+1)] = JA

t (vt; ǫ̂t+1)
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