133 research outputs found

    Mode transitions in a model reaction-diffusion system driven by domain growth and noise

    Get PDF
    Pattern formation in many biological systems takes place during growth of the underlying domain. We study a specific example of a reaction–diffusion (Turing) model in which peak splitting, driven by domain growth, generates a sequence of patterns. We have previously shown that the pattern sequences which are presented when the domain growth rate is sufficiently rapid exhibit a mode-doubling phenomenon. Such pattern sequences afford reliable selection of certain final patterns, thus addressing the robustness problem inherent of the Turing mechanism. At slower domain growth rates this regular mode doubling breaks down in the presence of small perturbations to the dynamics. In this paper we examine the breaking down of the mode doubling sequence and consider the implications of this behaviour in increasing the range of reliably selectable final patterns

    Modeling electrolytically top gated graphene

    Get PDF
    We investigate doping of a single-layer graphene in the presence of electrolytic top gating. The interfacial phenomena is modeled using a modified Poisson-Boltzmann equation for an aqueous solution of simple salt. We demonstrate both the sensitivity of graphene's doping levels to the salt concentration and the importance of quantum capacitance that arises due to the smallness of the Debye screening length in the electrolyte.Comment: 7 pages, including 4 figures, submitted to Nanoscale Research Letters for a special issue related to the NGC 2009 conference (http://asdn.net/ngc2009/index.shtml

    The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems

    Get PDF
    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer–Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer–Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens

    The CPLEAR detector at CERN

    Get PDF
    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 produced by the annihilation of pˉ\bar{\rm p}'s in a hydrogen gas target. The K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 are identified by their companion products of the annihilation K±π{\rm K}^{\pm} \pi^{\mp} which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable of full on-line reconstruction and selection of events. The design, operating parameters and performance of the sub-detectors are described.

    Determination of the Form Factors for the Decay B0 --> D*-l+nu_l and of the CKM Matrix Element |Vcb|

    Get PDF
    We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element Vcb|V_{cb}| and of the parameters ρ2\rho^2, R1R_1, and R2R_2, which fully characterize the form factors of the B0D+νB^0 \to D^{*-}\ell^{+}\nu_\ell decay in the framework of HQET, based on a sample of about 52,800 B0D+νB^0 \to D^{*-}\ell^{+}\nu_\ell decays recorded by the BABAR detector. The kinematical information of the fully reconstructed decay is used to extract the following values for the parameters (where the first errors are statistical and the second systematic): ρ2=1.156±0.094±0.028\rho^2 = 1.156 \pm 0.094 \pm 0.028, R1=1.329±0.131±0.044R_1 = 1.329 \pm 0.131 \pm 0.044, R2=0.859±0.077±0.022R_2 = 0.859 \pm 0.077 \pm 0.022, F(1)Vcb=(35.03±0.39±1.15)×103\mathcal{F}(1)|V_{cb}| = (35.03 \pm 0.39 \pm 1.15) \times 10^{-3}. By combining these measurements with the previous BABAR measurements of the form factors which employs a different technique on a partial sample of the data, we improve the statistical accuracy of the measurement, obtaining: ρ2=1.179±0.048±0.028,R1=1.417±0.061±0.044,R2=0.836±0.037±0.022,\rho^2 = 1.179 \pm 0.048 \pm 0.028, R_1 = 1.417 \pm 0.061 \pm 0.044, R_2 = 0.836 \pm 0.037 \pm 0.022, and F(1)Vcb=(34.68±0.32±1.15)×103. \mathcal{F}(1)|V_{cb}| = (34.68 \pm 0.32 \pm 1.15) \times 10^{-3}. Using the lattice calculations for the axial form factor F(1)\mathcal{F}(1), we extract Vcb=(37.74±0.35±1.25±1.441.23)×103|V_{cb}| =(37.74 \pm 0.35 \pm 1.25 \pm ^{1.23}_{1.44}) \times 10^{-3}, where the third error is due to the uncertainty in F(1)\mathcal{F}(1)

    Study of the Exclusive Initial-State Radiation Production of the DDˉD \bar D System

    Get PDF
    A study of exclusive production of the DDˉD \bar D system through initial-state r adiation is performed in a search for charmonium states, where D=D0D=D^0 or D+D^+. The D0D^0 mesons are reconstructed in the D0Kπ+D^0 \to K^- \pi^+, D0Kπ+π0D^0 \to K^- \pi^+ \pi^0, and D0Kπ+π+πD^0 \to K^- \pi^+ \pi^+ \pi^- decay modes. The D+D^+ is reconstructed through the D+Kπ+π+D^+ \to K^- \pi^+ \pi^+ decay mode. The analysis makes use of an integrated luminosity of 288.5 fb1^{-1} collected by the BaBar experiment. The DDˉD \bar D mass spectrum shows a clear ψ(3770)\psi(3770) signal. Further structures appear in the 3.9 and 4.1 GeV/c2c^2 regions. No evidence is found for Y(4260) decays to DDˉD \bar D, implying an up per limit \frac{\BR(Y(4260)\to D \bar D)}{\BR(Y(4260)\to J/\psi \pi^+ \pi^-)} < 7.6 (95 % confidence level)

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams
    corecore