10 research outputs found
Bioesterified polysubstituted-cyclodextrin/surfactant nanoparticles obtained by multilevel self-assembly
The purpose of this work is to investigate the inclusion complexation between a novel amphiphilic biotransesterified cyclodextrin (CD), incorporated in nanostructured environment, and a model drug compound. A water-insoluble γ-cyclodextrin derivative (γ-CD-C10), polysubstituted with multiple (n=7-8) decanoyl chains (C10) on the secondary face, is produced by enzymatically-assisted esterification. The γ-CD-C10 derivative is embedded in amphiphilic nanoenvironment created by self-assembly with the lipophilic dye Nile red (NR) and the non-ionic surfactant polysorbate 80 (P80). The inclusion complexation and the environmental effects upon the γ-CD-C10/NR/P80 nanoparticle (NP) formation, in a multilevel self-assembly approach, are investigated by means of steady-state fluorescence and Förster resonance energy transfer (FRET) techniques. Quasi-elastic light scattering (QELS) is used to control the NP size distribution during the sequential steps of the assembling process
Recommended from our members
Arizona Upland Cotton Variety Testing Program, 2002
Each year the University of Arizona conducts variety trials across the state to evaluate the performance of upland cotton varieties. These tests provide unbiased data on the performance of varieties when tested side-by-side under typical production practices. In 2002, we planted a total of 9 trials, two in the Yuma region (Yuma County), four in the central region (Maricopa and Pinal counties), one in the southern region (Pima county), and two in the eastern region (Graham, Greenlee, and Cochise counties). We tested nine to twelve commercially available varieties at each test site. The purpose of this report is to present the results of the 2002 tests conducted in the Yuma, western, central, southern, and eastern regions of Arizona
Recommended from our members
Arizona Upland Cotton Variety Testing Program, 2000
Each year the University of Arizona conducts variety trials across the state to evaluate the performance of upland cotton varieties. These tests provide unbiased data on the performance of varieties when tested side-by-side under typical production practices. In 2000, we planted a total of ten trials, one in the southwestern region (Yuma county), six in the central region (MoHave, La Paz, Maricopa, and Pinal counties), one in the southern region (Pima county), and two in the eastern region (Graham and Cochise counties). We tested six to ten commercially available varieties in each test. The purpose of this report is to present the results of our 2000 tests conducted in southwestern, central and southern Arizona. Lee Clark presents results from eastern Arizona in two companion reports in this publication. The results show that many varieties performed well at several locations, indicating good adaptation to Arizona conditions. The highest yielding varieties did not always produce the most value per acre, clearly demonstrating the importance of both yield and fiber quality in determining the value of the crop. Growers should carefully weigh the costs and benefits of yield, quality, and transgenic technology when selecting varieties
Recommended from our members
Arizona Upland Cotton Variety Testing Program, 2001
Each year the University of Arizona conducts variety trials across the state to evaluate the performance of upland cotton varieties. These tests provide unbiased data on the performance of varieties when tested side-by-side under typical production practices. In 2001, we planted a total of 12 trials, one in the Yuma region (Yuma county), two in the western region (La Paz and Mohave counties), five in the central region (Maricopa and Pinal counties), one in the southern region (Pima county), and three in the eastern region (Graham, Greenlee, and Cochise counties). We tested seven to twelve commercially available varieties at each test site. The purpose of this report is to present the results of the 2001 tests conducted in the Yuma, western, central, southern, and eastern regions of Arizona
Mesoporous self-assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water-insoluble substances
International audienceSoft mesoporous hierarchically structured particles were created by the self-assembly of an amphiphilic deep cavitand cyclodextrin βCD-nC10 (degree of substitution n = 7.3), with a nanocavity grafted by multiple alkyl (C10) chains on the secondary face of the βCD macrocycle through enzymatic biotransesterification, and the nonlamellar lipid monoolein (MO). The effect of the non-ionic dispersing agent polysorbate 80 (P80) on the liquid crystalline organization of the nanocarriers and their stability was studied in the context of vesicle-to-cubosome transition. The coexistence of small vesicular and nanosponge membrane objects with bigger nanoparticles with inner multicompartment cubic lattice structures was established as a typical feature of the employed dispersion process. The cryogenic transmission electron microscopy (cryo-TEM) images and small-angle X-ray scattering (SAXS) structural analyses revealed the dependence of the internal organization of the self-assembled nanoparticles on the presence of embedded βCD-nC10 deep cavitands in the lipid bilayers. The obtained results indicated that the incorporated amphiphilic βCD-nC10 building blocks stabilize the cubic lattice packing in the lipid membrane particles, which displayed structural features beyond the traditional CD nanosponges. UV-Vis spectroscopy was employed to characterize the nanoencapsulation of a model hydrophobic dimethylphenylazo-naphthol guest compound (Oil red) in the created nanocarriers. In perspective, these dual porosity carriers should be suitable for co-encapsulation and sustained delivery of peptide, protein or siRNA biopharmaceuticals together with small molecular weight drug compounds or imaging agents. © 2016 The Royal Society of Chemistry