110 research outputs found

    The Hyden Fault Scarp, Western Australia: Paleoseismic Evidence for Repeated Quaternary Displacement in an Intracratonic Setting

    Get PDF
    We present new paleoseismicity data for the 30 km long and 2.5 m high Hyden fault scarp in Western Australia, which, when combined with the results of previous research, provides the most extensive record of surface-rupturing earthquakes yet assembled for an 'active' Australian intracratonic fault. The data indicate that four to five surface-rupturing earthquakes have occurred on the Hyden Fault during the Quaternary (E1, ca 20 ka; E2, ca 55 - 50 ka; E3, ca 100 - 90 ka; and two events E4 and E5, 4200 ka). Activity is episodic, with single seismic cycle slip rates varying from 0.03 mm/y to 50.01 mm/y. Paleoearthquake magnitudes are estimated to have been in the order of Mw 6.8. The identification of a similar fault scarp immediately north west of the Hyden scarp, and of two air photo lineaments to the west of the Hyden scarp, indicates that strain is distributed among a family of faults in this region. The presence of multiple nearby active faults suggests that the recurrence of severe ground shaking in the Hyden region is more frequent than indicated by the paleoseismic data presented here

    Accelerating tropicalization and the transformation of temperate seagrass meadows

    Get PDF
    Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more directconsumption- based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions

    The piRNA-pathway factor FKBP6 is essential for spermatogenesis but dispensable for control of meiotic LINE-1 expression in humans

    Get PDF
    Infertility affects around 7% of the male population and can be due to severe spermatogenic failure (SPGF), resulting in no or very few sperm in the ejaculate. We initially identified a homozygous frameshift variant in FKBP6 in a man with extreme oligozoospermia. Subsequently, we screened a total of 2,699 men with SPGF and detected rare bi-allelic loss-of-function variants in FKBP6 in five additional persons. All six individuals had no or extremely few sperm in the ejaculate, which were not suitable for medically assisted reproduction. Evaluation of testicular tissue revealed an arrest at the stage of round spermatids. Lack of FKBP6 expression in the testis was confirmed by RT-qPCR and immunofluorescence staining. In mice, Fkbp6 is essential for spermatogenesis and has been described as being involved in piRNA biogenesis and formation of the synaptonemal complex (SC). We did not detect FKBP6 as part of the SC in normal human spermatocytes, but small RNA sequencing revealed that loss of FKBP6 severely impacted piRNA levels, supporting a role for FKBP6 in piRNA biogenesis in humans. In contrast to findings in piRNA-pathway mouse models, we did not detect an increase in LINE-1 expression in men with pathogenic FKBP6 variants. Based on our findings, FKBP6 reaches a "strong" level of evidence for being associated with male infertility according to the ClinGen criteria, making it directly applicable for clinical diagnostics. This will improve patient care by providing a causal diagnosis and will help to predict chances for successful surgical sperm retrieval

    Lack of Renal 11 Beta-Hydroxysteroid Dehydrogenase Type 2 at Birth, a Targeted Temporal Window for Neonatal Glucocorticoid Action in Human and Mice

    Get PDF
    International audienceBackground Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2). This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse. Methods Cortisol (F) and cortisone (E) concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity) and between plasma and urine in newborns (renal activity). Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species. Results We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein. Conclusions We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming

    Prenatal Excess Glucocorticoid Exposure and Adult Affective Disorders:A Role for Serotonergic and Catecholamine Pathways

    Get PDF
    Fetal glucocorticoid exposure is a key mechanism proposed to underlie prenatal ‘programming’ of adult affective behaviours such as depression and anxiety. Indeed, the glucocorticoid metabolising enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which is highly expressed in the placenta and the developing fetus, acts as a protective barrier from the high maternal glucocorticoids which may alter developmental trajectories. The programmed changes resulting from maternal stress or bypass or from the inhibition of 11β-HSD2 are frequently associated with alterations in the hypothalamic-pituitary-adrenal (HPA) axis. Hence, circulating glucocorticoid levels are increased either basally or in response to stress accompanied by CNS region-specific modulations in the expression of both corticosteroid receptors (mineralocorticoid and glucocorticoid receptors). Furthermore, early-life glucocorticoid exposure also affects serotonergic and catecholamine pathways within the brain, with changes in both associated neurotransmitters and receptors. Indeed, global removal of 11β-HSD2, an enzyme that inactivates glucocorticoids, increases anxiety‐ and depressive-like behaviour in mice; however, in this case the phenotype is not accompanied by overt perturbation in the HPA axis but, intriguingly, alterations in serotonergic and catecholamine pathways are maintained in this programming model. This review addresses one of the potential adverse effects of glucocorticoid overexposure in utero, i.e. increased incidence of affective behaviours, and the mechanisms underlying these behaviours including alteration of the HPA axis and serotonergic and catecholamine pathways

    Nutritional approaches to breaking the intergenerational cycle of obesity

    Get PDF
    The link between poor maternal nutrition and an increased burden of disease in subsequent generations has been widely demonstrated in both human and animal studies. Historically, the nutritional challenges experienced by pregnant and lactating women were largely those of insufficient calories and severe micronutrient deficiencies. More recently, however, Western societies have been confronted with a new nutritional challenge; that of maternal obesity and excessive maternal intake of calories, fat, and sugar. Exposure of the developing fetus and infant to this obesogenic environment results in an increased risk of obesity and metabolic disease later in life. Furthermore, increased caloric, fat, and sugar intake can occur in conjunction with micronutrient deficiency, which may further exacerbate these programming effects. In light of the current epidemic of obesity and metabolic disease, attention has now turned to identifying nutritional interventions for breaking this intergenerational obesity cycle. In this review, we discuss the approaches that have been explored to date and highlight the need for further research.Beverly S. Muhlhausler, Jessica R. Gugusheff, Zhi Yi Ong and Mini A. Vithayathi

    Fetal brain 11β-hydroxysteroid dehydrogenase type 2 selectively determines programming of adult depressive-like behaviors and cognitive function, but not anxiety behaviors in male mice

    Get PDF
    Stress or elevated glucocorticoids during sensitive windows of fetal development increase the risk of neuropsychiatric disorders in adult rodents and humans, a phenomenon known as glucocorticoid programming. 11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2), which catalyses rapid inactivation of glucocorticoids in the placenta, controls access of maternal glucocorticoids to the fetal compartment, placing it in a key position to modulate glucocorticoid programming of behavior. However, the importance of the high expression of 11β-HSD2 within the midgestational fetal brain is unknown. To examine this, a brain-specific knockout of 11β-HSD2 (HSD2BKO) was generated and compared to wild-type littermates. HSD2BKO have markedly diminished fetal brain 11β-HSD2, but intact fetal body and placental 11β-HSD2 and normal fetal and placental growth. Despite normal fetal plasma corticosterone, HSD2BKO exhibit elevated fetal brain corticosterone levels at midgestation. As adults, HSD2BKO show depressive-like behavior and have cognitive impairments. However, unlike complete feto-placental deficiency, HSD2BKO show no anxiety-like behavioral deficits. The clear mechanistic separation of the programmed components of depression and cognition from anxiety implies distinct mechanisms of pathogenesis, affording potential opportunities for stratified interventions

    Analysis of copy number variation in men with non-obstructive azoospermia

    Get PDF
    BACKGROUND: Recent findings demonstrate that single nucleotide variants can cause non-obstructive azoospermia (NOA). In contrast, copy number variants (CNVs) were only analysed in few studies in infertile men. Some have reported a higher prevalence of CNVs in infertile versus fertile men. OBJECTIVES: This study aimed to elucidate if CNVs are associated with NOA. MATERIALS AND METHODS: We performed array-based comparative genomic hybridization (aCGH) in 37 men with meiotic arrest, 194 men with Sertoli cell-only phenotype, and 21 control men. We filtered our data for deletions affecting genes and prioritized the affected genes according to a literature search. Prevalence of CNVs was compared between all groups. Exome data of 2,030 men were screened to detect further genetic variants in prioritized genes. Modelling was performed for the protein encoded by the novel candidate gene TEKT5 and we stained for TEKT5 in human testicular tissue. RESULTS: We determined the cause of infertility in two individuals with homozygous deletions of SYCE1 and in one individual with a heterozygous deletion of SYCE1 combined with a likely pathogenic missense variant on the second allele. We detected heterozygous deletions affecting MLH3, EIF2B2, SLX4, CLPP and TEKT5, in one subject each. CNVs were not detected more frequently in infertile men compared with controls. DISCUSSION: While SYCE1 and MLH3 encode known meiosis-specific proteins, much less is known about the proteins encoded by the other identified candidate genes, warranting further analyses. We were able to identify the cause of infertility in one out of the 231 infertile men by aCGH and in two men by using exome sequencing data. CONCLUSION: As aCGH and exome sequencing are both expensive methods, combining both in a clinical routine is not an effective strategy. Instead, using CNV calling from exome data has recently become more precise, potentially making aCGH dispensable

    Long-term impacts of prenatal synthetic glucocorticoids exposure on functional brain correlates of cognitive monitoring in adolescence

    Get PDF
    The fetus is highly responsive to the level of glucocorticoids in the gestational environment. Perturbing glucocorticoids during fetal development could yield long-term consequences. Extending prior research about effects of prenatally exposed synthetic glucocorticoids (sGC) on brain structural development during childhood, we investigated functional brain correlates of cognitive conflict monitoring in term-born adolescents, who were prenatally exposed to sGC. Relative to the comparison group, behavioral response consistency (indexed by lower reaction time variability) and a brain correlate of conflict monitoring (the N2 event-related potential) were reduced in the sGC exposed group. Relatedly, source localization analyses showed that activations in the fronto-parietal network, most notably in the cingulate cortex and precuneus, were also attenuated in these adolescents. These regions are known to subserve conflict detection and response inhibition as well as top-down regulation of stress responses. Moreover, source activation in the anterior cingulate cortex correlated negatively with reaction time variability, whereas activation in the precuneus correlated positively with salivary cortisol reactivity to social stress in the sGC exposed group. Taken together, findings of this study indicate that prenatal exposure to sGC yields lasting impacts on the development of fronto-parietal brain functions during adolescence, affecting multiple facets of adaptive cognitive and behavioral control
    corecore