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Abstract 23 

The link between poor maternal nutrition and an increased burden of disease in the 24 

subsequent generations has been widely demonstrated in both human and animal studies. 25 

Historically, the nutritional challenges experienced by pregnant and lactating women were 26 

largely those of insufficient calories and severe micronutrient deficiencies. More recently 27 

however, Western societies have been confronted with a new nutritional challenge; that of 28 

maternal obesity and excessive maternal intake of calories, fat and sugar. The exposure of the 29 

developing fetus and infant to this obesogenic environment results in an increased risk of 30 

obesity and metabolic disease later in life. Furthermore, this increased caloric intake often 31 

occurs in conjunction with micronutrient deficiency, which may further exacerbate these 32 

programming effects. In light of the current epidemic of obesity and metabolic disease, 33 

attention has now turned to identifying nutritional interventions for breaking this 34 

intergenerational obesity cycle. In this review, we discuss the approaches that have been 35 

explored to date, and highlight the need for further research.  36 

Key words: maternal nutrition, pregnancy, fetal programming, obesity, micronutrients  37 

  38 

  39 
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Introduction  40 

A world-wide series of epidemiological and experimental animal studies has provided 41 

compelling evidence that the nutritional environment experienced before birth and early 42 

infancy has a central role in determining the long-term health of individuals (McMillen & 43 

Robinson, 2005). As a result, maintaining an appropriate maternal nutrient supply during 44 

pregnancy and lactation is of central importance for optimising the development of the fetus 45 

and neonate. For the developing fetus and breast-fed infant, the maternal diet is the sole 46 

source of nutrition, and must therefore supply all of the necessary macro- and micro-nutrients 47 

to support the growth and development of tissue and organ systems. As a consequence, 48 

inappropriate maternal nutrition during these critical periods of development has the potential 49 

to impact negatively on the long-term health of the children.  50 

 51 

The importance of maternal nutrition for supporting growth and development has been 52 

recognised for decades. The devastating effects of sub-optimal maternal nutrition  on fetal 53 

and infant growth are perhaps illustrated most clearly by the effects of severe deficiencies of 54 

key micronutrients (Zlotkin 2011). Rickets was once a relatively common childhood disorder 55 

resulting from maternal Vitamin D deficiency, and spina bifida a neural tube disorder is 56 

caused by insufficient maternal folate intake during the critical period of development of the 57 

nervous system in the first trimester of pregnancy (Park, 1940; De Wals et al., 2007; Zlotkin 58 

2011). Recognition of the origin of these disorders led to wide-spread interventions to correct 59 

these deficiencies in the maternal diet and, as a result, these once common disorders have 60 

been virtually eliminated in the developed world (Park, 1940; De Wals et al., 2007).  61 

 62 

Whilst overt maternal nutrient deficiencies are no longer commonplace, modern Western 63 

countries are facing a new nutritional challenge, that of maternal obesity and caloric excess, 64 
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sometimes in conjunction with micronutrient deficiency(Kaidar-Person et al., 2008). The 65 

exposure of individuals to this ‘obeseogenic environment’ before birth and in early infancy 66 

has been shown to increase their propensity to obesity and its associated metabolic disorders 67 

in child and adult life, thereby creating an intergenerational cycle of obesity and metabolic 68 

disease (Catalano, 2003; Catalano & Ehrenberg, 2006; Rkhzay-Jaf et al., 2012). The purpose 69 

of this review is to explore our current understanding of the early life origins of obesity and 70 

to discuss potential nutritional strategies for breaking the intergenerational obesity cycle.  71 

 72 

The Global Epidemic of Obesity and Metabolic Disease 73 

The incidence of obesity and metabolic disease continues to increase across the globe. 74 

According to the most recent figures released by the WHO, the worldwide prevalence of 75 

obesity nearly doubled between 1980 and 2008. In 2008, more than 1.4 billion adults (20 76 

years and older) were overweight and, of these, over 200 million men and nearly 300 million 77 

women were obese (WHO, 2012). The obesity epidemic has extended to the world’s children, 78 

and in 2012 more than 40 million children under the age of five were classified as overweight 79 

(WHO, 2012). In addition to the direct impact of overweight and obesity on physical and 80 

mental health, these conditions are also associated with a number of co-morbidities, in 81 

particular type 2 diabetes (T2DM) and cardiovascular disease, which further reduce the 82 

quality of life of these individuals (Bray, 2004). The rising prevalence of obesity and its 83 

associated metabolic disorders places a considerable economic burden on the health care 84 

budgets of governments in developed and developing countries (Daviglus et al., 2004; WHO, 85 

2012). In this context, there has been a growing recognition of the need to develop effective 86 

strategies for obesity prevention, and attention has turned to the role of the early nutritional 87 

environment as a modulator of obesity risk and a potential window of opportunity for 88 

intervention.  89 
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Maternal Obesity and Overnutrition: A Growing Obstetric Challenge 90 

The obesity epidemic has spread to include women from all age groups, including women of 91 

reproductive age, and this has resulted in a dramatic rise in the number of women entering 92 

pregnancy overweight or obese. In 2000, around 30% of women entering pregnancy in the 93 

US and Australia were classified as overweight or obese (Callaway et al., 2006; Catalano & 94 

Ehrenberg, 2006). More recent figures have suggested that this figure may now be even 95 

higher, and that over 50% of women were overweight or obese when presenting for their first 96 

antenatal appointment (Athukorala et al., 2010; Dodd et al., 2011c). On the basis of these 97 

figures, we would therefore expect that at least half of all infants born in developed countries 98 

are exposed to maternal overweight or obesity before birth.  99 

 100 

This increasing prevalence of maternal overweight and obesity has implications for the long-101 

term health of children. Mothers who are overweight or obese during their pregnancy have an 102 

increased risk of pregnancy complications, caesarean delivery and infant morbidities (Dodd 103 

et al., 2011a). The infants are also more likely to be born at greater than the 90th centile for 104 

their gestational age or macrosomic (>4000g), largely as a result of increased fat deposition 105 

(Catalano, 2003). Importantly, these infants are not only heavier at birth, but go on to be at 106 

increased risk of obesity and type 2 diabetes during childhood and adulthood (Catalano & 107 

Ehrenberg, 2006; Rkhzay-Jaf et al., 2012). This has therefore created an intergenerational 108 

cycle of obesity and metabolic disease, which has been identified in numerous populations 109 

across the globe. More recent studies have attempted to quantify the magnitude of the effect; 110 

population-based studies in both Pima Indians and multi-ethnic populations in the US have 111 

identified maternal obesity and diabetes during pregnancy as the strongest risk factor for the 112 

development of type 2 diabetes in the offspring, accounting for 40% and 47% respectively of 113 

the type 2 diabetes cases in these populations (Dabelea et al., 1998; Dabelea et al., 2008). 114 
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The risk of type 2 diabetes in populations exposed to diabetes in utero remains higher even 115 

when the effects of maternal body fat mass are controlled for, suggesting that there are 116 

independent effects of maternal diabetes and high maternal glucose levels on the systems 117 

which control fat deposition and insulin sensitivity (Dabelea et al., 2008).  118 

 119 

The description of this intergenerational cycle of obesity in human populations world-wide, 120 

has led to the search for the underlying biological mechanisms which drive it and these 121 

studies have implicated maternal nutrition as a critical player. In these studies, maternal 122 

overweight or obesity is associated with increases in the concentrations of key nutrients, in 123 

particular glucose, in the maternal circulation (Catalano et al., 2003). Glucose is the principal 124 

substrate for fetal growth, and is delivered to the fetus down a transplacental glucose gradient 125 

from the maternal circulation (Fowden, 1995). Therefore, increased maternal glucose 126 

concentrations result in an increased delivery of glucose to the developing fetus. This 127 

stimulates insulin production by the fetal pancreas and leads to excess fetal growth and fat 128 

deposition (Metzger, 1991) as well as  increased infant weight at birth (Figure 1). In addition 129 

to the effects on growth, exposure to excess glucose and fat (particularly saturated fat) also 130 

influences gene expression in developing tissues and thereby produce permanent changes in 131 

their structure and function (Armitage et al., 2004).  132 

 133 

The Biological Mechanisms 134 

An increasing number of studies in animal models have attempted to explore the biological 135 

mechanisms through which maternal overweight and overnutrition increase the susceptibility 136 

to obesity in the offspring (Armitage et al., 2004; McMillen et al., 2009). These studies have 137 

provided evidence that exposure to an excess nutrient supply before birth, particularly 138 

glucose and saturated fat, acts on a number of the key systems involved in the regulation of 139 
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appetite, fat deposition and insulin sensitivity, reducing the capacity of an individual to 140 

maintain energy balance and glucose homeostasis in postnatal life. While animal studies have 141 

provided important insights into the biological mechanisms of developmental programming, 142 

there are differences between animals and humans in the timing of organ development, 143 

placental nutrient transfer and maternal/fetal metabolism which need to be considered when 144 

extrapolating these findings to humans. There is also a need to consider how the treatment 145 

applied to the animals relates to the human experience. By way of example, exclusively high-146 

fat diets have been widely used in rodent studies of developmental programming, but are 147 

have been shown to be a less robust model for studying human metabolic disease compared 148 

to the model in which animals are fed a cafeteria diet (Sampey et al., 2011). Whilst it is not 149 

clear whether all the mechanisms identified in animals also operate in humans, the phenotype 150 

of offspring born following maternal nutritional perturbations are comparable between 151 

humans and many different animal models, suggesting that the process of fetal programming 152 

is common to a wide range of species (Ozanne, 2001; Armitage et al., 2004).  153 

 154 

The appetite-regulating neural network is located in the arcuate nucleus of the hypothalamus. 155 

This network has been well-described in a number of species, and consists of neurons which 156 

contain neuropeptides that act to either stimulate (e.g Neuropeptide Y, NPY and Agouti-157 

related peptide, AGRP) or inhibit (e.g. Proopiomelanocortin, POMC and Cocaine-158 

amphetamine regulated transcript, CART) food intake (Williams et al., 2001). The network is 159 

chiefly regulated by the adipocyte-derived hormone, leptin, whose receptor is expressed on 160 

the neurons within the appetite-regulating network. Leptin binding acts to reduce the 161 

expression of appetite-stimulating neuropeptides and increase the expression of appetite-162 

inhibitors, thereby potently reducing feeding behaviour (Williams et al., 2001) (Baskin et al., 163 

2001). The major period of development of this network is before birth (in humans and large 164 
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mammals) and in the early postnatal period (in rats and mice). Importantly, exposure to an 165 

increased nutrient supply during the development of this network results in impaired appetite 166 

regulation in postnatal life (Grove & Smith, 2003) (Muhlhausler et al., 2004). In sheep, lambs 167 

exposed to maternal overnutrition during the second half of pregnancy consume more milk 168 

during the immediate postnatal period and are fatter at one month of age than their control 169 

counterparts (Muhlhausler et al., 2006). Importantly, these lambs are no longer able to 170 

appropriately regulate their appetite in response to an increase in food intake, and this appears 171 

to be a consequence of reduced expression of the leptin receptor in the appetite-regulating 172 

centre (Muhlhausler et al., 2006). Similar dysregulation of appetite and persistent 173 

hyperphagia are also reported in rodent offspring who are born to mothers fed on high-fat, 174 

high-sugar diets during pregnancy and lactation, or exposed to overnutrition as a result of 175 

small-litter rearing in the early postnatal period (Plagemann et al., 1999; Kirk et al., 2009).  176 

 177 

In addition to effects on food intake, there is also evidence that prenatal exposure to high-fat 178 

and high-sugar diets results in alterations to food preferences (Bayol et al., 2007; Teegarden 179 

et al., 2009; Ong & Muhlhausler, 2011). In our laboratory, we have shown that offspring of 180 

rat dams fed a high fat, high sugar cafeteria diet during pregnancy and lactation exhibit an 181 

increased preference for fat compared to offspring of dams fed a standard rodent diet, when 182 

provided with free access to a cafeteria diet after weaning (Ong & Muhlhausler, 2011). 183 

Perinatal exposure to the cafeteria diet was also associated with altered development of the 184 

central reward pathway in the offspring, which could account for the increased propensity 185 

towards overconsumption of palatable foods (Ong & Muhlhausler, 2011).  186 

 187 

In the case of adipose tissue, studies in both rodents and large animal models have reported 188 

that maternal obesity and hyperglycemia are associated with increased mRNA expression 189 
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(Muhlhausler et al., 2007) and activity (Kasser et al., 1981; Benkalfat et al., 2011) of key 190 

lipogenic genes in the adipose tissue of the offspring. These genes include the lipogenic 191 

transcription factor, PPARγ, and lipogenic enzymes, lipoprotein lipase (LPL) and glycerol-3-192 

phosphate dehydrogenase (G3PDH). It is the increased activity of these genes that is 193 

associated with an increased accumulation of adipose tissue in early postnatal life 194 

(Muhlhausler et al., 2006). Furthermore, this increased lipogenic capacity in the adipose 195 

tissue persists beyond the immediate post-natal period, such that these offspring have a 196 

greater capacity for lipid storage throughout the lifecourse.  197 

 198 

Offspring exposed to maternal hyperglycemia or maternal high-fat feeding also exhibit 199 

severely impaired glucose tolerance and insulin sensitivity in young adulthood (Catalano & 200 

Ehrenberg, 2006). Studies in rodents have demonstrated that this is the result of altered 201 

development of key components of the insulin signalling pathway in the offspring; offspring 202 

of obese dams exhibited a decreased abundance of insulin-receptor substrate 1 (IRS1) and 203 

impaired phosphorylation of Protein Kinase B (PKB), in muscle and liver, consistent with 204 

impaired signaling downstream of the insulin receptor (Shelley et al., 2009). The nutritional 205 

environment an individual experiences during the perinatal period therefore plays a critical 206 

role in determining the structure and function of the adipose tissue, liver and skeletal muscle 207 

in postnatal life, and therefore the risk of obesity, glucose intolerance and insulin resistance in 208 

the offspring (Poston et al., 2011). 209 

 210 

Given this, there is good evidence to suggest that exposure to maternal obesity/overnutrition 211 

has substantial impacts on the development of systems regulating energy balance and 212 

metabolism, which have lasting effects on the susceptibility of these individuals to obesity 213 

and metabolic disease later in life (Figure 2). These studies have highlighted the important 214 
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role of maternal nutrition in mediating these effects, and this has led to suggestions that the 215 

adverse effects of maternal obesity/maternal overnutrition during critical windows of 216 

development could potentially be alleviated or corrected by targeted nutritional interventions.  217 

 218 

The Case for Nutritional Interventions 219 

Fetal development is a time during which tissues and organ systems are undergoing rapid and 220 

complex development, and exposure to even small amounts of toxins during critical 221 

developmental windows can have devastating long-term effects. As a result, the use of drugs 222 

either before birth or during early infancy for overcoming the effects of exposure to an 223 

increased nutrient supply is unlikely to be a feasible approach. In contrast, nutritional 224 

interventions are safe, relatively inexpensive and have the potential to be feasibly 225 

implemented on a population level. The efficacy of nutritional interventions during 226 

pregnancy/lactation for producing lasting benefits for the offspring has also been 227 

demonstrated in cases of micronutrient deficiency. Ensuring adequate Vitamin D intake 228 

during pregnancy and lactation in previously deficient individuals resulted in a dramatic 229 

decrease in the incidence of rickets in infants and children (Park, 1940) and the wide-spread 230 

use of folate supplements in early pregnancy has virtually eliminated neural tube defects (De 231 

Wals et al., 2007).  232 

 233 

Interventions which reduce even mildly elevated maternal glucose concentrations have also 234 

been shown to result in marked improvements in pregnancy outcomes studies (Poston, 2011). 235 

In addition to being reported in animal models, the efficacy of nutritional interventions to 236 

reduce maternal glucose has been demonstrated in two large-scale clinical studies, including 237 

the Australian Carbohydrate Intolerance Study in Pregnant Women (ACHOIS) and the 238 

Maternal-Fetal Medicine Unit (MFMU) Network study. In both cases, aggressive dietary 239 
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management of mild gestational diabetes, compared to routine care, resulted in reduced risks 240 

of preeclampsia, perinatal morbidity and fetal overgrowth (Crowther et al., 2005; Landon et 241 

al., 2009). The search for nutritional interventions that could overcome the effects of 242 

overnutrition have focussed on either a whole-diet approach to reduce maternal glucose levels 243 

or various single-nutrient approaches. The remaining sections of this review will discuss 244 

some nutritional interventions which have shown early promise, including restricting 245 

gestational weight gain, maintaining a low glycemic index (GI) diet during pregnancy and 246 

targeted maternal nutritional supplements. .  247 

 248 

Potential Strategies for Nutritional Intervention 249 

Global Calorie Restriction  250 

Independent of maternal weight at the start of pregnancy, the degree of weight gained during 251 

pregnancy (gestational weight gain) has been associated with an increased risk of obesity in 252 

the child (Dodd et al., 2011a). The suggested guidelines for maternal weight gain during 253 

pregnancy are lower for women who are overweight or obese, compared to those in the 254 

underweight or healthy weight ranges. However, few overweight and obese women are able 255 

to adhere to these weight gain guidelines, and compliance rates are lower than for normal 256 

weight women (Dodd et al., 2011a). It has therefore been suggested that limiting weight gain 257 

during pregnancy, through diet and life-style interventions, may be an effective strategy for 258 

improving the long-term health outcomes of children born to overweight and obese mothers. 259 

A recent systematic review focusing on the impact of weight-management programs in 260 

pregnant women assessed the results of 88 studies, which were made up of 40 randomised 261 

and 48 non-randomised and observational studies, involving a total of 182,139 women 262 

(Athukorala et al., 2010). The authors of this review concluded that dietary interventions in 263 

pregnancy were the most effective strategy for weight-management. These dietary 264 
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interventions to limit gestational weight gain were associated with significant reductions in 265 

the incidence of pre-eclampsia, gestational hypertension and preterm birth and also tended to 266 

reduce the incidence of gestational diabetes (Athukorala et al., 2010). Importantly, none of 267 

these studies identified significant maternal or fetal adverse effects as a result of these 268 

interventions.  269 

 270 

Despite these encouraging findings, the authors acknowledged that there was considerable 271 

heterogeneity in the effect of the dietary interventions in different studies. They suggested 272 

that thismay have been due to differences in BMI, age, parity, socioeconomic status and 273 

medical conditions in pregnancy between the study populations, as well as differences in 274 

genetic background of the populations under study. In addition, there have been no follow up 275 

studies in humans which have determined whether these nutritional interventions in the 276 

mother have beneficial effects for the later metabolic health of the children. Nevertheless, the 277 

evidence to date suggests that limiting gestational weight gain in overweight and obese 278 

women may be an effective strategy for improving neonatal outcomes in women who enter 279 

pregnancy with a high BMI, and do not appear to carry any significant risks for maternal or 280 

fetal health. It is important to exercise caution with this last statement, since it is clear from 281 

animal studies that restricting maternal caloric intake before or during pregnancy, 282 

independent of maternal BMI, may result in altered development of the HPA axis in the fetus 283 

and result in altered functioning of the stress axis in postnatal life (Zhang et al., 2011). The 284 

scientific community eagerly awaits the results of large scale randomised controlled trials of 285 

limiting weight gain in pregnancy in overweight/obese women, such as the LIMIT study in 286 

South Australia  (Dodd et al., 2011b), in order to provide more robust evidence for the 287 

benefits of diet and lifestyle interventions during pregnancy.  288 
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Low GI diets 289 

The glycemic index (GI) describes the effects of different carbohydrate foods on blood 290 

glucose levels. Carbohydrates that break down quickly during digestion and release glucose 291 

rapidly into the bloodstream have a high GI; whilst carbohydrates that break down more 292 

slowly, releasing glucose gradually into the bloodstream, have a low GI (Brand-Miller & 293 

Holt, 2004; Brand-Miller, 2004). As a result, a low GI diet is associated with lower fasting 294 

and postprandial glucose concentrations than a high GI diets (Brand-Miller, 2004). Low GI 295 

diets have received significant attention in adult nutrition in relation to their effects on body 296 

weight and insulin action. In support of this, switching overweight and/or type 2 diabetic 297 

individuals from typical western (high GI) diets to low GI diets can improve insulin 298 

sensitivity and assist with maintenance of weight loss (Jenkins et al., 2008; Larsen et al.; 299 

Marsh et al.). 300 

 301 

The GI of the diet is likely to be particularly relevant in pregnancy, given that glucose is 302 

transferred directly from the mother to the fetus and is the main energy substrate for 303 

intrauterine growth (Fowden, 1995). Based on previous findings in adults, we and others have 304 

hypothesised that consuming a low GI diet during pregnancy would be associated with 305 

exposure of the fetus to a lower glucose supply compared to a moderate-high GI diet, and 306 

thus to a reduced risk of obesity and type 2 diabetes in the offspring. Whilst there have been 307 

few studies to date which have investigated the effects of low GI diets during pregnancy on 308 

neonatal outcomes, the  results from the small number of existing studies have been 309 

encouraging. Indeed, a recent systematic review of human studies investigating the effect of 310 

maternal intake of low GI diets on pregnancy outcomes reported that four of the eight studies 311 

carried out to date showed a protective association between low GI diets and pregnancy-312 

related outcomes, and none showed negative effects (Louie et al., 2010). These studies 313 
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demonstrated that for both normal and diabetic women birth weight, birth weight z-score and 314 

ponderal index of offspring were lower in women consuming the low GI diet compared to 315 

those consuming a standard Western diet or low-fat diet, and there was a reduced risk of 316 

delivering a large for gestational age or macrosomic infant (Louie et al., 2010; Louie et al., 317 

2011). However, while these studies provide important evidence that lowering the GI of the 318 

diet consumed in pregnancy may be an effective strategy for improving perinatal outcomes, 319 

there are no studies which have evaluated the impact of a low GI diet during pregnancy on 320 

the metabolic health of the offspring beyond the immediate postnatal period. It therefore 321 

remains to be determined whether this intervention will produce lasting health benefits to the 322 

offspring. The added attraction of the low GI diet, in comparison to other diets used for 323 

weight-loss and controlling glucose homeostasis, is the fact that they appear to be more 324 

acceptable for consumers.  325 

 326 

Omega-3 Long Chain Polyunsaturated Fatty Acids (LCPUFA) 327 

The omega-3 long chain polyunsaturated fatty acids (LCPUFA), docosahexaenoic acid 328 

(DHA) and eicosapentaenoic acid (EPA), play an important role in optimal fetal and neonatal 329 

development (Makrides & Gibson, 2002) ). Whilst most studies to date have focussed on 330 

their role in neurodevelopment, there has been increasing interest in their potential metabolic 331 

effects as a result of data from in vitro studies which have shown that both DHA and EPA 332 

can inhibit the proliferation and differentiation of pre-adipocytes and selectively inhibit the 333 

activity of pro-adipogenic factors (Ailhaud et al., 2006; Massiera et al., 2006). In addition, 334 

omega-3 LCPUFA also act on mature adipose cells to inhibit the expression of the key 335 

lipogenic mediator sterol-regulated binding protein 1 (SREBP-1c), resulting in a reduced 336 

expression of downstream lipogenic genes, including Fatty Acid Synthase (FAS) and glycerol 337 

3 phosphate dehydrogenase (G3PDH) and a reduced accumulation of lipid (Masden et al., 338 
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2005). Thus, at least in adults, omega-3 LCPUFAs can reduce the accumulation of body fat 339 

by limiting both the hyperplastic and hypertrophic expansion of adipose depots (Okuno et al., 340 

1997; Raclot et al., 1997; Ruzickova et al., 2004). 341 

 342 

The evidence linking omega-3 LPCUFA with reduced fat deposition, have led us and others 343 

to hypothesise that supplementing the diet of the mother with omega-3 LCPUFA during 344 

pregnancy and/or lactation may be a potential strategy for reducing fat mass, and thereby 345 

improve metabolic outcomes, in their children (Hauner et al., 2009). The studies in this area 346 

to date have, however, produced conflicting and disparate results, and there is still a lack of 347 

robust evidence that exposure to an increased supply of omega-3 fatty acids during early life 348 

has the potential to produce lasting metabolic benefits (Muhlhausler et al., 2010). To date, 349 

only 4 published human studies have investigated this have been relatively small with high 350 

attrition rates and have, perhaps unsurprisingly given these caveats, produced disparate 351 

results (Muhlhausler et al., 2010). Indeed, 2 of these studies reported an increase in fat 352 

accumulation in children who had been exposed to omega-3 supplementation during infancy 353 

(Lauritzen et al., 2005), which is in complete contrast to the hypothesised effect. Whilst 354 

animal studies have more consistently reported a reduction in fat mass in offspring of mothers 355 

receiving a diet supplemented with omega-3 LCPUFA during pregnancy and/or lactation 356 

(Korotkova et al., 2002; Massiera et al., 2003; Wyrwoll et al., 2006; Ibrahim et al., 2009), all 357 

but one of these studies have also weaned the offspring onto a high omega-3 LCPUFA diet. 358 

In our laboratory, we found that offspring of dams supplemented with omega-3 fatty acids 359 

only during pregnancy and lactation, and then weaned onto a standard rodent feed containing 360 

low levels of omega-3 LCPUFA exhibited an increase in relative body fat mass at 6 weeks of 361 

age, which was normalised by 3 months (Muhlhausler et al., 2011). There is therefore still 362 

considerable work to be done in determining whether omega-3 LCPUFA supplementation of 363 
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the maternal diet is an appropriate strategy for curtailing early fat deposition, and if providing 364 

these supplements to overweight and obese mothers could help improve the metabolic 365 

outcomes in their children.  366 

 367 

Maternal Nutritional Supplements 368 

Whilst maternal overnutrition is associated with increased intake of calories, saturated fats 369 

and/or sugars, there is data that has suggested that this global overnutrition can occur against 370 

a background of deficiency in key micronutrients (Kaidar-Person et al., 2008). Therefore, the 371 

potential exists for the negative effects of being exposed to an excess supply of fat and 372 

glucose during development to be compounded by those of being exposed to an inadequate 373 

supply of key micronutrients. The concentrations of micronutrients in the maternal blood, 374 

perhaps with the exception of haemoglobin as an indicator of iron status, are not routinely 375 

assessed during pregnancy (Women’s and Children’s Health Network, (2012 ), making it 376 

difficult to identify the extent of such deficiencies.   377 

 378 

Similar to what has been reported for human diets containing excess amounts of junk foods, 379 

the cafeteria diet that we have used in our rodent model of maternal overfeeding is also 380 

deficient in several key micronutrients, in particular calcium and magnesium (Gugusheff and 381 

Muhlhausler, unpublished observations). This is potentially significant, since maternal 382 

dietary insufficiency of magnesium as well as zinc and iron, even in the absence of maternal 383 

overnutrition, has been associated with an increased risk of obesity and its associated 384 

metabolic disorders in the offspring. In rodents, maternal magnesium  or zinc deficiency are 385 

both associated with increased body fat mass, reduced lean mass and reduced insulin 386 

secretion in the adult offspring (Venu et al., 2005; Venu et al., 2008). Similarly, offspring of 387 

iron deficient mothers exhibit increased visceral adiposity, decreased locomotor activity and 388 
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an increased susceptibility to diet-induced obesity (Komolova et al., 2008; Bourque et al., 389 

2012).  390 

 391 

Clinically, micronutrient deficiencies have been associated with low birth weights. However, 392 

studies in human populations which have investigated the long term metabolic outcomes of 393 

children born to women provided with micronutrient supplements during pregnancy are 394 

limited.  A randomised control trial in Nepalese women and showed that folic acid-iron-zinc 395 

supplementation but not folic acid-iron supplementation, reduced the incidence of low birth 396 

weight by 15%.  Importantly, children of women who received the folic acid-iron-zinc 397 

supplement also had reduced peripheral adiposity 6-8 years of age (Stewart et al., 2009). This 398 

was supported by a similar study in Peruvian women, which also highlighted the benefits of 399 

zinc supplementation in increasing lean body mass in the children in infancy (Iannotti et al., 400 

2008). Whilst it is apparent that further investigations are needed, micronutrient 401 

supplementation during pregnancy could act as an important nutritional intervention to 402 

improve the metabolic outcomes of children born to mothers consuming an energy dense but 403 

nutrient poor western diet. Ideally, these micronutrients would be obtained from the diet, 404 

however nutritional supplements are likely to provide a more practical solution. There are an 405 

increasing number of nutritional supplements specifically targeted at pregnant and lactating 406 

women. However, whether the levels of key micronutrients they contain is sufficient to 407 

overcome deficiencies in women consuming diets dominated by processed and convenience 408 

foods remains to be investigated.  409 

 410 

 411 

Summary and Perspective 412 
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It is now well-established that the nutritional environment that an individual experiences 413 

before birth and in early postnatal life has a critical role in defining the long-term health 414 

outcomes of the offspring. Through most of history, insufficient caloric intake and severe 415 

micronutrient deficiencies were the major problems for women in pregnancy. Whilst these 416 

problems are still, unfortunately, experienced in many parts of the world, in developed 417 

countries it has been largely replaced by a new nutritional challenge; maternal obesity and 418 

overnutrition. Infants exposed to this obeseogenic environment during early life are at 419 

increased risk of obesity and metabolic disease, thereby creating an intergenerational cycle of 420 

poor metabolic health.  421 

 422 

In this review, we have discussed the mechanisms thought to underlie this association, and 423 

some of the potential nutritional strategies through which it may be possible to intervene 424 

(Figure 3). Despite the scale of the obesity problem, there remains a paucity of studies which 425 

have attempted to test these interventions in either animal models or the clinical setting. It is 426 

our view that a greater focus on intervention is essential if we are to break the 427 

intergenerational cycle of the obesity and metabolic disease, and that food may indeed be the 428 

best medicine to address this. It is also important to note the recent data which has 429 

demonstrated that the paternal diet before conception can have independent effects on the 430 

metabolic phenotype of the offspring. Two note-worthy studies in this area have 431 

demonstrated that paternal high-fat feeding (Ng et al., 2010) and low-protein diets (Carone et 432 

al., 2010) are both associated with metabolic programming of the offspring, even when all 433 

mothers are maintained on the same diet during pregnancy and lactation. Thus, when 434 

developing nutritional interventions to overcome the trans-generational obesity cycle, it may 435 

be important to consider the father, as well as the mother, as a potential target. 436 

 437 
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FIGURE LEGENDS 445 

Figure 1. Proposed pathways through which maternal obesity results in increased fetal 446 

growth. Maternal obesity and/or overnutrition results in increased nutrient delivery to the 447 

developing fetus. This increases fetal glucose concentrations and stimulates the fetal pancreas 448 

to release insulin. The resulting fetal hyperglycemia and hyperinsulinemia promotes tissue 449 

growth and fat deposition, resulting in a heavy infant who is also at risk of obesity and type 2 450 

diabetes (TDM) later in life.  451 

 452 

Figure 2. Summary of the biological mechanisms implicated in the early life origins of 453 

obesity. Exposure of the developing fetus/neonate to an increased nutrient supply results in 454 

altered development of the systems which regulate appetite, motivation and reward, fat 455 

deposition and insulin signalling which results in persistent changes to how these systems 456 

operate in postnatal life and thus prediposes the individual to obesity and metabolic disease. 457 

These effects may be exacerbated by deficiencies of key micronutrients during the 458 

development of these systems. 459 

 460 

Figure 3. Proposed nutritional interventions for overcoming the programming of obesity by 461 

maternal obesity/overnutrition. These strategies focus on either global dietary approaches to 462 

improve maternal glycemic control and thereby reduce glucose delivery to the developing 463 

fetus (diet lifestyle interventions, low GI diets) or targetting specific developmental pathways 464 

using single nutrients (omega-3 LCPUFA, micronutrient supplementation).  465 

  466 
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