281 research outputs found
Radial Structure in the TW Hya Circumstellar Disk
We present new near-infrared interferometric data from the CHARA array and the Keck Interferometer on the circumstellar disk of the young star, TW Hya, a proposed "transition disk." We use these data, as well as previously published, spatially resolved data at 10 μm and 7 mm, to constrain disk models based on a standard flared disk structure. We find that we can match the interferometry data sets and the overall spectral energy distribution with a three-component model, which combines elements at spatial scales proposed by previous studies: optically thin, emission nearest the star, an inner optically thick ring of emission at roughly 0.5 AU followed by an opacity gap and, finally, an outer optically thick disk starting at ~4 AU. The model demonstrates that the constraints imposed by the spatially resolved data can be met with a physically plausible disk but this requires a disk containing not only an inner gap in the optically thick disk as previously suggested, but also a gap between the inner and outer optically thick disks. Our model is consistent with the suggestion by Calvet et al. of a planet with an orbital radius of a few AU. We discuss the implications of an opacity gap within the optically thick disk
The fundamental parameters of the roAp star 10 Aql
Due to the strong magnetic field and related abnormal surface layers existing
in rapidly oscillating Ap stars, systematic errors are likely to be present
when determining their effective temperatures, which potentially compromises
asteroseismic studies of these pulsators. Using long-baseline interferometry,
our goal is to determine accurate angular diameters of a number of roAp targets
to provide a temperature calibration for these stars. We obtained
interferometric observations of 10 Aql with the visible spectrograph VEGA at
the CHARA array. We determined a limb-darkened angular diameter of
0.275+/-0.009 mas and deduced a linear radius of 2.32+/-0.09 R_sun. We
estimated the star's bolometric flux and used it, in combination with its
parallax and angular diameter, to determine the star's luminosity and effective
temperature. For two data sets of bolometric flux we derived an effective
temperature of 7800+/-170 K and a luminosity of 18+/-1 L_sun or of 8000+/-210 K
and 19+/-2 L_sun. We used these fundamental parameters together with the large
frequency separation to constrain the mass and the age of 10 Aql, using the
CESAM stellar evolution code. Assuming a solar chemical composition and
ignoring all kinds of diffusion and settling of elements, we obtained a mass of
1.92 M_sun and an age of 780 Gy or a mass of 1.95 M_sun and an age of 740 Gy,
depending on the considered bolometric flux. For the first time, we managed to
determine an accurate angular diameter for a star smaller than 0.3 mas and to
derive its fundamental parameters. In particular, by only combining our
interferometric data and the bolometric flux, we derived an effective
temperature that can be compared to those derived from atmosphere models. Such
fundamental parameters can help for testing the mechanism responsible for the
excitation of the oscillations observed in the magnetic pulsating stars
The Ages of A-Stars I: Interferometric Observations and Age Estimates for Stars in the Ursa Major Moving Group
We have observed and spatially resolved a set of seven A-type stars in the
nearby Ursa Major moving group with the Classic, CLIMB, and PAVO beam combiners
on the CHARA Array. At least four of these stars have large rotational
velocities ( 170 ) and are expected to
be oblate. These interferometric measurements, the stars' observed photometric
energy distributions, and values are used to computationally
construct model oblate stars from which stellar properties (inclination,
rotational velocity, and the radius and effective temperature as a function of
latitude, etc.) are determined. The results are compared with MESA stellar
evolution models (Paxton et al. 2011, 2013) to determine masses and ages. The
value of this new technique is that it enables the estimation of the
fundamental properties of rapidly rotating stars without the need to fully
image the star. It can thus be applied to stars with sizes comparable to the
interferometric resolution limit as opposed to those that are several times
larger than the limit. Under the assumption of coevality, the spread in ages
can be used as a test of both the prescription presented here and the MESA
evolutionary code for rapidly rotating stars. With our validated technique, we
combine these age estimates and determine the age of the moving group to be 414
23 Myr, which is consistent with, but much more precise than previous
estimates.Comment: Accepted by Ap
CHARA/MIRC observations of two M supergiants in Perseus OB1: temperature, Bayesian modeling, and compressed sensing imaging
Two red supergiants of the Per OB1 association, RS Per and T Per, have been
observed in H band using the MIRC instrument at the CHARA array. The data show
clear evidence of departure from circular symmetry. We present here new
techniques specially developed to analyze such cases, based on state-of-the-art
statistical frameworks. The stellar surfaces are first modeled as limb-darkened
discs based on SATLAS models that fit both MIRC interferometric data and
publicly available spectrophotometric data. Bayesian model selection is then
used to determine the most probable number of spots. The effective surface
temperatures are also determined and give further support to the recently
derived hotter temperature scales of red su- pergiants. The stellar surfaces
are reconstructed by our model-independent imaging code SQUEEZE, making use of
its novel regularizer based on Compressed Sensing theory. We find excellent
agreement between the model-selection results and the reconstructions. Our
results provide evidence for the presence of near-infrared spots representing
about 3-5% of the stellar flux
First visual orbit for the prototypical colliding-wind binary WR 140
Wolf-Rayet stars represent one of the final stages of massive stellar
evolution. Relatively little is known about this short-lived phase and we
currently lack reliable mass, distance, and binarity determinations for a
representative sample. Here we report the first visual orbit for WR
140(=HD193793), a WC7+O5 binary system known for its periodic dust production
episodes triggered by intense colliding winds near periastron passage. The IOTA
and CHARA interferometers resolved the pair of stars in each year from
2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining
our results with the recent improved double-line spectroscopic orbit of Fahed
et al. (2011), we find the WR 140 system is located at a distance of 1.67 +/-
0.03 kpc, composed of a WR star with M_WR = 14.9 +/- 0.5 Msun and an O star
with M_O = 35.9 +/- 1.3 Msun. Our precision orbit yields key parameters with
uncertainties times 6 smaller than previous work and paves the way for detailed
modeling of the system. Our newly measured flux ratios at the near-infrared H
and Ks bands allow an SED decomposition and analysis of the component
evolutionary states.Comment: Complete OIFITS dataset included via Data Conservancy Projec
Multiplicity of Galactic Cepheids from long-baseline interferometry~III. Sub-percent limits on the relative brightness of a close companion of ~Cephei
We report new CHARA/MIRC interferometric observations of the Cepheid
archetype Cep, which aimed at detecting the newly discovered
spectroscopic companion. We reached a maximum dynamic range = 6.4,
5.8, and 5.2 mag, respectively within the relative distance to the Cepheid mas, mas and mas. Our observations did not
show strong evidence of a companion. We have a marginal detection at
with a flux ratio of 0.21\%, but nothing convincing as we found other possible
probable locations. We ruled out the presence of companion with a spectral type
earlier than F0V, A1V and B9V, respectively for the previously cited ranges
. From our estimated sensitivity limits and the Cepheid light curve, we
derived lower-limit magnitudes in the band for this possible companion to
be and 7.77 mag, respectively for mas,
mas and mas. We also found that to be consistent
with the predicted orbital period, the companion has to be located at a
projected separation mas with a spectral type later than a F0V star.Comment: Accepted for publication in MNRA
Fundamental Properties of Cool Stars with Interferometry
We present measurements of fundamental astrophysical properties of nearby,
low-mass, K- and M-dwarfs from our DISCOS survey (DIameterS of COol Stars). The
principal goal of our study is the determination of linear radii and effective
temperatures for these stars. We calculate their radii from angular diameter
measurements using the CHARA Array and Hipparcos distances. Combined with
bolometric flux measurements based on literature photometry, we use our angular
diameter results to calculate their effective surface temperatures. We present
preliminary results established on an assortment of empirical relations to the
stellar effective temperature and radius that are based upon these
measurements. We elaborate on the discrepancy seen between theoretical and
observed stellar radii, previously claimed to be related to stellar activity
and/or metallicity. Our preliminary conclusion, however, is that convection
plays a larger role in the determination of radii of these late-type stars.
Understanding the source of the radius disagreement is likely to impact other
areas of study for low-mass stars, such as the detection and characterization
of extrasolar planets in the habitable zones.Comment: Contribution to Proceedings of Cool Stars 16 Workshop; 8 pages in ASP
format; 9 figure
Imaging the Algol Triple System in H Band with the CHARA Interferometer
Algol (Beta Per) is an extensively studied hierarchical triple system whose
inner pair is a prototype semi-detached binary with mass transfer occurring
from the sub-giant secondary to the main-sequence primary. We present here the
results of our Algol observations made between 2006 and 2010 at the CHARA
interferometer with the Michigan Infrared Combiner in the H band. The use of
four telescopes with long baselines allows us to achieve better than 0.5 mas
resolution and to unambiguously resolve the three stars. The inner and outer
orbital elements, as well as the angular sizes and mass ratios for the three
components are determined independently from previous studies. We report a
significantly improved orbit for the inner stellar pair with the consequence of
a 15% change in the primary mass compared to previous studies. We also
determine the mutual inclination of the orbits to be much closer to
perpendicularity than previously established. State-of-the-art image
reconstruction algorithms are used to image the full triple system. In
particular an image sequence of 55 distinct phases of the inner pair orbit is
reconstructed, clearly showing the Roche-lobe-filling secondary revolving
around the primary, with several epochs corresponding to the primary and
secondary eclipses
JouFLU: upgrades to the Fiber Linked Unit for Optical Recombination (FLUOR) interferometric beam combiner
The Fiber Linked Unit for Optical Recombination (FLUOR) is a precision interferometric beam combiner operating at the CHARA Array on Mt. Wilson, CA. It has recently been upgraded as part of a mission known as “Jouvence of FLUOR” or JouFLU. As part of this program JouFLU has new mechanic stages and optical payloads, new alignment systems, and new command/control software. Furthermore, new capabilities have been implemented such as a Fourier Transform Spectrograph (FTS) mode and spectral dispersion mode. These upgrades provide new capabilities to JouFLU as well as improving statistical precision and increasing observing efficiency. With these new systems, measurements of interferometric visibility to the level of 0.1% precision are expected on targets as faint as 6th magnitude in the K band. Here we detail the upgrades of JouFLU and report on its current status
- …
