84 research outputs found

    325 MHz VLA Observations of Ultracool Dwarfs TVLM 513-46546 and 2MASS J0036+1821104

    Full text link
    We present 325 MHz (90 cm wavelength) radio observations of ultracool dwarfs TVLM 513-46546 and 2MASS J0036+1821104 using the Very Large Array (VLA) in June 2007. Ultracool dwarfs are expected to be undetectable at radio frequencies, yet observations at 8.5 GHz (3.5 cm) and 4.9 GHz (6 cm) of have revealed sources with > 100 {\mu}Jy quiescent radio flux and > 1 mJy pulses coincident with stellar rotation. The anomalous emission is likely a combination of gyrosynchrotron and cyclotron maser processes in a long-duration, large-scale magnetic field. Since the characteristic frequency for each process scales directly with the magnetic field magnitude, emission at lower frequencies may be detectable from regions with weaker field strength. We detect no significant radio emission at 325 MHz from TVLM 513-46546 or 2MASS J0036+1821104 over multiple stellar rotations, establishing 2.5{\sigma} total flux limits of 795 {\mu}Jy and 942 {\mu}Jy respectively. Analysis of an archival VLA 1.4 GHz observation of 2MASS J0036+1821104 from January 2005 also yields a non-detection at the level of < 130 {\mu}Jy . The combined radio observation history (0.3 GHz to 8.5 GHz) for these sources suggests a continuum emission spectrum for ultracool dwarfs which is either flat or inverted below 2-3 GHz. Further, if the cyclotron maser instability is responsible for the pulsed radio emission observed on some ultracool dwarfs, our low-frequency non-detections suggest that the active region responsible for the high-frequency bursts is confined within 2 stellar radii and driven by electron beams with energies less than 5 keV.Comment: 11 pages, 5 figures, submitted to A

    VVV-WIT-01: highly obscured classical nova or protostellar collision?

    Get PDF
    © 2020 The Author(s).A search of the first Data Release of the VISTA Variables in the Via Lactea (VVV) Survey discovered the exceptionally red transient VVV-WIT-01 (H-Ks=5.2). It peaked before March 2010, then faded by ~9.5 mag over the following two years. The 1.6-22 ”m spectral energy distribution in March 2010 was well fit by a highly obscured black body with T ~ 1000 K and AKs ~ 6.6 mag. The source is projected against the Infrared Dark Cloud (IRDC) SDC G331.062-0.294. The chance projection probability is small for any single event (p ≈ 0.01 to 0.02) which suggests a physical association, e.g. a collision between low mass protostars. However, black body emission at T ~ 1000 K is common in classical novae (especially CO novae) at the infrared peak in the light curve, due to condensation of dust ~30-60 days after the explosion. Radio follow up with the Australia Telescope Compact Array (ATCA) detected a fading continuum source with properties consistent with a classical nova but probably inconsistent with colliding protostars. Considering all VVV transients that could have been projected against a catalogued IRDC raises the probability of a chance association to p=0.13 to 0.24. After weighing several options, it appears likely that VVV-WIT-01 was a classical nova event located behind an IRDC.Peer reviewedFinal Published versio

    Radio monitoring of the periodically variable IR source LRLL 54361: No direct correlation between the radio and IR emissions

    Get PDF
    J. Forbrich, “Radio monitoring of the periodically variable IR source LRLL 54361: No direct correlation between the radio and IR emissions”, The Astrophysical Journal, Vol. 814(1), November 2015. © 2015. The American Astronomical Society.LRLL 54361 is an infrared source located in the star forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 during roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∌\sim100 AU that smooths out the variability over a period of order a year. The average flux density measured in these 2014 observations, 27±\pm5 ÎŒ\muJy, is about a factor of two less than that measured about 1.5 years before, 53±53\pm11 ÎŒ\muJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.Peer reviewe

    Young Stellar Object Variability (YSOVAR): Long Timescale Variations in the Mid-Infrared

    Full text link
    The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 & 4.5 um) time-series photometry of the Orion Nebula Cluster plus smaller footprints in eleven other star-forming cores (AFGL490, NGC1333, MonR2, GGD 12-15, NGC2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC1396A, and Ceph C). There are ~29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the "standard sample" on which we calculate statistics, consisting of fast cadence data, with epochs about twice per day for ~40d. We also define a "standard sample of members", consisting of all the IR-selected members and X-ray selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data--the Stetson index, a chi^2 fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of ~6 years, by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data; out of members and field objects combined, at most 0.02% may have transient IR excesses.Comment: Accepted to AJ; 38 figures, 93 page

    Serendipitous discovery of a dusty disc around WDJ181417.84-735459.83

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online at: https://doi.org/10.1093/mnras/staa3836Spectroscopic observations of white dwarfs reveal that many of them are polluted by exoplanetary material, whose bulk composition can be uniquely probed this way. We present a spectroscopic and photometric analysis of the DA white dwarf WDJ181417.84−-735459.83, an object originally identified to have a strong infrared excess in the 2MASS and WISE catalogues that we confirmed to be intrinsic to the white dwarf, and likely corresponding to the emission of a dusty disc around the star. The finding of Ca, Fe and Mg absorption lines in two X-SHOOTER spectra of the white dwarf, taken 8 years apart, is further evidence of accretion from a dusty disc. We do not report variability in the absorption lines between these two spectra. Fitting a blackbody model to the infrared excess gives a temperature of 910±50\pm50 K. We have estimated a total accretion flux from the spectroscopic metal lines of ∣M˙∣=1.784×109 |\dot{\rm M}| = 1.784 \times 10^{9}\, g s−1^{-1}.Peer reviewedFinal Accepted Versio

    Extreme radio flares and associated X-ray variability from young stellar objects in the Orion Nebula Cluster

    Get PDF
    Jan Forbrich, et al, ‘Extreme Radio Flares and Associated XRay Variability from Young Stellar Objects in the Orion Nebula Cluster’, The Astrophysical Journal, Vol. 844 (2), July 2017. DOI: https://doi.org/10.3847/1538-4357/aa7aa4. © 2017 The American Astronomical Society. All Rights Reserved.Young stellar objects are known to exhibit strong radio variability on timescales of weeks to months, and a few reports have documented extreme radio flares with at least an order of magnitude change in flux density on timescales of hours to days. However, there have been few constraints on the occurrence rate of such radio flares or on the correlation with pre-main sequence X-ray flares, although such correlations are known for the Sun and nearby active stars. Here we report simultaneous deep VLA radio and Chandra X-ray observations of the Orion Nebula Cluster, targeting hundreds of sources to look for the occurrence rate of extreme radio variability and potential correlation with the most extreme X-ray variability. We identify 13 radio sources with extreme radio variability, with some showing an order of magnitude change in flux density in less than 30 minutes. All of these sources show X-ray emission and variability, but we find clear correlations with extreme radio flaring only on timescales <1 hr. Strong X-ray variability does not predict the extreme radio sources and vice versa. Radio flares thus provide us with a new perspective on high-energy processes in YSOs and the irradiation of their protoplanetary disks. Finally, our results highlight implications for interferometric imaging of sources violating the constant-sky assumption.Peer reviewedFinal Published versio

    IRAS 20050+2720: Anatomy of a young stellar cluster

    Get PDF
    IRAS 20050+2720 is young star forming region at a distance of 700 pc without apparent high mass stars. We present results of our multiwavelength study of IRAS 20050+2720 which includes observations by Chandra and Spitzer, and 2MASS and UBVRI photometry. In total, about 300 YSOs in different evolutionary stages are found. We characterize the distribution of young stellar objects (YSOs) in this region using a minimum spanning tree (MST) analysis. We newly identify a second cluster core, which consists mostly of class II objects, about 10 arcmin from the center of the cloud. YSOs of earlier evolutionary stages are more clustered than more evolved objects. The X-ray luminosity function (XLF) of IRAS 20050+2720 is roughly lognormal, but steeper than the XLF of the more massive Orion nebula complex. IRAS 20050+2720 shows a lower N_H/A_K ratio compared with the diffuse ISM.Comment: 15 pages, 12 figures, accepted by A

    A 1.3 mm SMA Survey of 29 Variable Young Stellar Objects

    Get PDF
    Young stellar objects (YSOs) may undergo periods of active accretion (outbursts), during which the protostellar accretion rate is temporarily enhanced by a few orders of magnitude. Whether or not these accretion outburst YSOs possess similar dust/gas reservoirs to each other, and whether or not their dust/gas reservoirs are similar as quiescent YSOs, are issues not yet clarified. The aim of this work is to characterize the millimeter thermal dust emission properties of a statistically significant sample of long and short duration accretion outburst YSOs (i.e., FUors and EXors) and the spectroscopically identified candidates of accretion outbursting YSOs (i.e., FUor-like objects). We have carried out extensive Submillimeter Array (SMA) observations mostly at ∌\sim225 GHz (1.33 mm) and ∌\sim272 GHz (1.10 mm), from 2008 to 2017. We covered accretion outburst YSOs located at 3-σ\sigma significance. Detected sources except for the two cases of V883 Ori and NGC 2071 MM3 were observed with ∌\sim1"" angular resolution. Overall our observed targets show a systematically higher millimeter luminosity distribution than those of the M∗>M_{*}>0.3 M⊙M_{\odot} Class II YSOs in the nearby (â‰Č\lesssim400 pc) low-mass star-forming molecular clouds (e.g., Taurus, Lupus, Upp Scorpio, and Chameleon I). In addition, at 1 mm our observed confirmed binaries or triple-system sources are systematically fainter than the rest of the sources even though their 1 mm fluxes are broadly distributed. We may have detected ∌\sim30-60\% millimeter flux variability from V2494 Cyg and V2495 Cyg, from the observations separated by ∌\sim1 year

    YSOVAR: Mid-Infrared Variability in NGC 1333

    Get PDF
    L. M. Rebull, “YSOVAR: Mid-Infrared Variability in NGC 1333”, The Astronomical Journal, Vol. 150(6), November 2015. © 2015. The American Astronomical Society. All rights reserved. Available online at: https://doi.org/10.1088/0004-6256/150/6/175As part of the Young Stellar Object VARiability (YSOVAR) program, we monitored NGC 1333 for ~35 days at 3.6 and 4.5 um using the Spitzer Space Telescope. We report here on the mid-infrared variability of the point sources in the ~10x~20arcmin area centered on 03:29:06, +31:19:30 (J2000). Out of 701 light curves in either channel, we find 78 variables over the YSOVAR campaign. About half of the members are variable. The variable fraction for the most embedded SEDs (Class I, flat) is higher than that for less embedded SEDs (Class II), which is in turn higher than the star-like SEDs (Class III). A few objects have amplitudes (10-90th percentile brightness) in [3.6] or [4.5]>0.2 mag; a more typical amplitude is 0.1-0.15 mag. The largest color change is >0.2 mag. There are 24 periodic objects, with 40% of them being flat SED class. This may mean that the periodic signal is primarily from the disk, not the photosphere, in those cases. We find 9 variables likely to be 'dippers', where texture in the disk occults the central star, and 11 likely to be 'bursters', where accretion instabilities create brightness bursts. There are 39 objects that have significant trends in [3.6]-[4.5] color over the campaign, about evenly divided between redder-when-fainter (consistent with extinction variations) and bluer-when-fainter. About a third of the 17 Class 0 and/or jet-driving sources from the literature are variable over the YSOVAR campaign, and a larger fraction (~half) are variable between the YSOVAR campaign and the cryogenic-era Spitzer observations (6-7 years), perhaps because it takes time for the envelope to respond to changes in the central source. The NGC 1333 brown dwarfs do not stand out from the stellar light curves in any way except there is a much larger fraction of periodic objects (~60% of variable brown dwarfs are periodic, compared to ~30% of the variables overall).Peer reviewe
    • 

    corecore