6 research outputs found

    Investigating the use of 3-D full-waveform inversion to characterize the host rock at a geological disposal site

    Get PDF
    The U.K. government has a policy to dispose of higher activity radioactive waste in a geological disposal facility (GDF), which will have multiple protective barriers to keep the waste isolated and to ensure no harmful quantities of radioactivity are able to reach the surface. Currently no specific GDF site in the United Kingdom has been chosen but, once it has, the site is likely to be investigated using seismic methods. In this study, we explore whether 3-D full-waveform inversion (FWI) of seismic data can be used to map changes in physical properties caused by the construction of the site, specifically tunnel-induced fracturing. We have built a synthetic model for a GDF located in granite at 1000 m depth below the surface, since granite is one of the candidate host rocks due to its high strength and low permeability and the GDF could be located at such a depth. We use an effective medium model to predict changes in P-wave velocity associated with tunnel-induced fracturing, within the spatial limits of an excavated disturbed zone (EdZ), modelled here as an increase in fracture density around the tunnel. We then generate synthetic seismic data using a number of different experimental geometries to investigate how they affect the performance of FWI in recovering subsurface P-wave velocity structure. We find that the location and velocity of the EdZ are recovered well, especially when data recorded on tunnel receivers are included in the inversion. Our findings show that 3-D FWI could be a useful tool for characterizing the subsurface and changes in fracture properties caused during construction, and make a suite of suggestions on how to proceed once a potential GDF site has been identified and the geological setting is known

    A guided tour of multiparameter full-waveform inversion with multicomponent data : from theory to practice

    No full text
    International audienceBuilding high-resolution models of several physical properties of the subsurface by multiparameter full waveform inversion (FWI) of multicomponent data will be a challenge for seismic imaging for the next decade. The physical properties, which govern propagation of seismic waves in visco-elastic media, are the velocities of the P- and S-waves, density, attenuation, and anisotropic parameters. Updating each property is challenging because several parameters of a different nature can have a coupled effect on the seismic response for a particular propagation regime (from transmission to reflection). This is generally referred to as trade-off or crosstalk between parameters. Moreover, different parameter classes can have different orders of magnitude or physical units and footprints of different strength in the wavefield, which can make the inversion poorly conditioned if it is not properly scaled. Read More: http://library.seg.org/doi/abs/10.1190/tle32091040.

    The role of xenobiotics in triggering psoriasis

    No full text
    corecore