749 research outputs found
Mathematical modelling of tissue-engineering angiogenesis
We present a mathematical model for the vascularisation of a porous scaffold following implantation in vivo. The model is given as a set of coupled non-linear ordinary differential equations (ODEs) which describe the evolution in time of the amounts of the different tissue constituents inside the scaffold. Bifurcation analyses reveal how the extent of scaffold vascularisation changes as a function of the parameter values. For example, it is shown how the loss of seeded cells arising from slow infiltration of vascular tissue can be overcome using a prevascularisation strategy consisting of seeding the scaffold with vascular cells. Using certain assumptions it is shown how the system can be simplified to one which is partially tractable and for which some analysis is given. Limited comparison is also given of the model solutions with experimental data from the chick chorioallantoic membrane (CAM) assay
Research Notes: Soybean Gene Resources Recently Received from China
Forty soybean cultivars were received from the Peoples Republic of China in a number of exchanges between June 1973 and June 1974. The first eight cultivars that we received were grown in row tests at Harrow, Woodslee and Ridgetown in 1975, along with \u27Harlen,\u27 \u27Harosoy 63,\u27 and \u27Harcar.\u27 These eight, plus the next seven that we received, had been tested in hill plots at Harrow in 1974, along with Hardome, Harlen, Harosoy 63, and \u27Harwood.\u27 The highest and lowest cultivar values are given for each of a number of characteristics within each group of cultivars as an indication of the potential value of the new germplasm
A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells.
Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute approximately 60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the differentiation of hES cells into an essentially pure (\u3e99%) population of ATII cells (hES-ATII). Purity, as well as biological features and morphological characteristics of normal ATII cells, was demonstrated for the hES-ATII cells, including lamellar body formation, expression of surfactant proteins A, B, and C, alpha-1-antitrypsin, and the cystic fibrosis transmembrane conductance receptor, as well as the synthesis and secretion of complement proteins C3 and C5. Collectively, these data document the successful generation of a pure population of ATII cells derived from hES cells, providing a practical source of ATII cells to explore in disease models their potential in the regeneration and repair of the injured alveolus and in the therapeutic treatment of genetic diseases affecting the lung
Aerodynamic investigations of ventilated brake discs.
The heat dissipation and performance of a ventilated brake disc strongly depends
on the aerodynamic characteristics of the flow through the rotor passages. The
aim of this investigation was to provide an improved understanding of ventilated
brake rotor flow phenomena, with a view to improving heat dissipation, as well
as providing a measurement data set for validation of computational fluid
dynamics methods. The flow fields at the exit of four different brake rotor
geometries, rotated in free air, were measured using a five-hole pressure probe
and a hot-wire anemometry system. The principal measurements were taken using
two-component hot-wire techniques and were used to determine mean and unsteady
flow characteristics at the exit of the brake rotors. Using phase-locked data
processing, it was possible to reveal the spatial and temporal flow variation
within individual rotor passages. The effects of disc geometry and rotational
speed on the mean flow, passage turbulence intensity, and mass flow were
determined. The rotor exit jet and wake flow were clearly observed as
characterized by the passage geometry as well as definite regions of high and
low turbulence. The aerodynamic flow characteristics were found to be reasonably
independent of rotational speed but highly dependent upon rotor geometry
Lung volume reduction surgery versus endobronchial valves: a randomised controlled trial
BACKGROUND: Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (BLVR) with endobronchial valves can improve outcomes in appropriately selected patients with emphysema. However, no direct comparison data exist to inform clinical decision making in people who appear suitable for both procedures. Our aim was to investigate whether LVRS produces superior health outcomes when compared with BLVR at 12 months. METHODS: This multicentre, single-blind, parallel-group trial randomised patients from five UK hospitals, who were suitable for a targeted lung volume reduction procedure, to either LVRS or BLVR and compared outcomes at 1 year using the i-BODE score. This composite disease severity measure includes body mass index, airflow obstruction, dyspnoea and exercise capacity (incremental shuttle walk test). The researchers responsible for collecting outcomes were masked to treatment allocation. All outcomes were assessed in the intention-to-treat population. RESULTS: 88 participants (48% female, mean±sd age 64.6±7.7 years, forced expiratory volume in 1 s percent predicted 31.0±7.9%) were recruited at five specialist centres across the UK and randomised to either LVRS (n=41) or BLVR (n=47). At 12 months follow-up, the complete i-BODE was available in 49 participants (21 LVRS/28 BLVR). Neither improvement in the i-BODE score (LVRS -1.10±1.44 versus BLVR -0.82±1.61; p=0.54) nor in its individual components differed between groups. Both treatments produced similar improvements in gas trapping (residual volume percent predicted: LVRS -36.1% (95% CI -54.6- -10%) versus BLVR -30.1% (95% CI -53.7- -9%); p=0.81). There was one death in each treatment arm. CONCLUSION: Our findings do not support the hypothesis that LVRS is a substantially superior treatment to BLVR in individuals who are suitable for both treatments
UKPMC: a full text article resource for the life sciences
UK PubMed Central (UKPMC) is a full-text article database that extends the functionality of the original PubMed Central (PMC) repository. The UKPMC project was launched as the first ‘mirror’ site to PMC, which in analogy to the International Nucleotide Sequence Database Collaboration, aims to provide international preservation of the open and free-access biomedical literature. UKPMC (http://ukpmc.ac.uk) has undergone considerable development since its inception in 2007 and now includes both a UKPMC and PubMed search, as well as access to other records such as Agricola, Patents and recent biomedical theses. UKPMC also differs from PubMed/PMC in that the full text and abstract information can be searched in an integrated manner from one input box. Furthermore, UKPMC contains ‘Cited By’ information as an alternative way to navigate the literature and has incorporated text-mining approaches to semantically enrich content and integrate it with related database resources. Finally, UKPMC also offers added-value services (UKPMC+) that enable grantees to deposit manuscripts, link papers to grants, publish online portfolios and view citation information on their papers. Here we describe UKPMC and clarify the relationship between PMC and UKPMC, providing historical context and future directions, 10 years on from when PMC was first launched
Resolved Photon Processes
We review the present level of knowledge of the hadronic structure of the
photon, as revealed in interactions involving quarks and gluons ``in" the
photon. The concept of photon structure functions is introduced in the
description of deep--inelastic scattering, and existing
parametrizations of the parton densities in the photon are reviewed. We then
turn to hard \gamp\ and \gaga\ collisions, where we treat the production of
jets, heavy quarks, hard (direct) photons, \jpsi\ mesons, and lepton pairs. We
also comment on issues that go beyond perturbation theory, including recent
attempts at a comprehensive description of both hard and soft \gamp\ and \gaga\
interactions. We conclude with a list of open problems.Comment: LaTeX with equation.sty, 85 pages, 29 figures (not included). A
complete PS file of the paper, including figures, can be obtained via
anonymous ftp from
ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-898.ps.
Walking on common ground: a cross-disciplinary scoping review on the clinical utility of digital mobility outcomes
Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity. Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice
Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment
Prostate cancer will develop chemoresistance following a period of chemotherapy. This is due, in part, to the acquisition of antiapoptotic properties by the cancer cells and, therefore, development of novel strategies for treatment is of critical need. Here, we attempt to clarify the role of the antiapoptotic molecule galectin-3 in prostate cancer cells using siRNA and antagonist approaches. The data showed that Gal-3 inhibition by siRNA or its antagonist GCS-100/modified citrus pectin (MCP) increased cisplatin-induced apoptosis of PC3 cells. Recent studies have indicated that cisplatin-induced apoptosis may be mediated by calpain, a calcium-dependent protease, as its activation leads to cleavage of androgen receptor into an androgen-independent isoform in prostate cancer cells. Thus, we examined whether calpain activation is associated with the Gal-3 function of regulating apoptosis. Here, we report that Gal-3 inhibition by siRNA or GCS-100/MCP enhances calpain activation, whereas Gal-3 overexpression inhibits it. Inhibition of calpain using its inhibitor and/or siRNA attenuated the proapoptotic effect of Gal-3 inhibition, suggesting that calpain activation may be a novel mechanism for the proapoptotic effect of Gal-3 inhibition. Thus, a paradigm shift for treating prostate cancer is suggested whereby a combination of a non-toxic anti-Gal-3 drug together with a toxic chemotherapeutic agent could serve as a novel therapeutic modality for chemoresistant prostate cancers
- …