99 research outputs found

    A novel system for spatial and temporal imaging of intrinsic plant water use efficiency

    Get PDF
    Instrumentation and methods for rapid screening and selection of plants with improved water use efficiency are essential to address current issues of global food and fuel security. A new imaging system that combines chlorophyll fluorescence and thermal imaging has been developed to generate images of assimilation rate (A), stomatal conductance (gs), and intrinsic water use efficiency (WUEi) from whole plants or leaves under controlled environmental conditions. This is the first demonstration of the production of images of WUEi and the first to determine images of gs from themography at the whole-plant scale. Data are presented illustrating the use of this system for rapidly and non-destructively screening plants for alterations in WUEi by comparing Arabidopsis thaliana mutants (OST1-1) that have altered WUEi driven by open stomata, with wild-type plants. This novel instrument not only provides the potential to monitor multiple plants simultaneously, but enables intra- and interspecies variation to be taken into account both spatially and temporally. The ability to measure A, gs, and WUEi progressively was developed to facilitate and encourage the development of new dynamic protocols. Images illustrating the instrument's dynamic capabilities are demonstrated by analysing plant responses to changing photosynthetic photon flux density (PPFD). Applications of this system will augment the research community's need for novel screening methods to identify rapidly novel lines, cultivars, or species with improved A and WUEi in order to meet the current demands on modern agriculture and food production. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology

    Molecular control of stomatal development

    Get PDF
    Plants have evolved developmental plasticity which allows the up- or down-regulation of photosynthetic and water loss capacities as new leaves emerge. This developmental plasticity enables plants to maximise fitness and to survive under differing environments. Stomata play a pivotal role in this adaptive process. These microscopic pores in the epidermis of leaves control gas exchange between the plant and its surrounding environment. Stomatal development involves regulated cell fate decisions that ensure optimal stomatal density and spacing, enabling efficient gas exchange. The cellular patterning process is regulated by a complex signalling pathway involving extracellular ligand-receptor interactions, which, in turn, modulate the activity of three master transcription factors essential for the formation of stomata. Here, we review the current understanding of the biochemical interactions between the epidermal patterning factor ligands and the ERECTA family of leucine-rich repeat receptor kinases. We discuss how this leads to activation of a kinase cascade, regulation of the bHLH transcription factor SPEECHLESS and its relatives, and ultimately alters stomatal production

    An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii

    Get PDF
    Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this end, we are performing an insertional mutagenesis programme with an enhancer trap in the tomato wild-related species Solanum pennellii. First, we developed an efficient transformation method which has allowed us to generate more than 2,000 T-DNA lines. Next, the collection of S. pennelli T0 lines has been screened in saline or drought conditions and several presumptive mutants have been selected for their salt and drought sensitivity. Moreover, T-DNA lines with expression of the reporter uidA gene in specific organs, such as vascular bundles, trichomes and stomata, which may play key roles in processes related to abiotic stress tolerance, have been identified. Finally, the growth of T-DNA lines in control conditions allowed us the identification of different development mutants. Taking into account that progenies from the lines are being obtained and that the collection of T-DNA lines is going to enlarge progressively due to the high transformation efficiency achieved, there are great possibilities for identifying key genes involved in different tolerance mechanisms to salinity and drought

    Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations

    Get PDF
    Plant pathogens cause significant losses to agricultural yields, and increasingly threaten food security, ecosystem integrity, and societies in general. Xylella fastidiosa (Xf) is one of the most dangerous plant bacteria worldwide, causing several diseases with profound impacts on agriculture and the environment. Primarily occurring in the Americas, its recent discovery in Asia and Europe demonstrates a dramatically broadened geographic range. The Xf pathogen has thus re-emerged as a global threat, with its poorly contained expansion in Europe creating a socio-economic, cultural, and political disaster. Xf represents a threat of global proportion because it can infect over 350 plant species worldwide, and the early detection of Xf has been identified as a critical need for its eradication. Here, we show that changes in plant functional traits retrieved from airborne imaging spectroscopy and thermography reveal Xf infection in trees before symptoms are visible. We obtained accuracies of disease detection exceeding 80% when high-resolution solar-induced fluorescence quantified by 3D simulations and thermal-based stress indicators were coupled with photosynthetic traits sensitive to rapid pigment dynamics and degradation. Moreover, we found that the visually asymptomatic trees originally scored as affected via spectral plant trait alterations (presumed false positives) developed Xf symptoms four months later at almost double the rate of the asymptomatic trees classified as not affected by remote sensing. We demonstrate that spectral plant trait alterations caused by Xf infection are detectable at the landscape scale before symptoms are visible, a critical requirement to help eradicate some of the most devastating plant diseases worldwide.JRC.D.1-Bio-econom

    Classification of Water Stress in Sunagoke Moss Using Color Texture and Neural Networks

    No full text
    corecore