5,958 research outputs found
Accuracy of photometric redshifts for future weak lensing surveys from space
Photometric redshifts are a key tool to extract as much information as
possible from planned cosmic shear experiments. In this work we aim to test the
performances that can be achieved with observations in the near-infrared from
space and in the optical from the ground. This is done by performing realistic
simulations of multi-band observations of a patch of the sky, and submitting
these mock images to software usually applied to real images to extract the
photometry and then a redshift estimate for each galaxy. In this way we mimic
the most relevant sources of uncertainty present in real data analysis,
including blending and light pollution between galaxies. As an example we adopt
the infrared setup of the ESA-proposed Euclid mission, while we simulate
different observations in the optical, modifying filters, exposure times and
seeing values. Finally, we consider directly some future ground-based
experiments, such as LSST, Pan-Starrs and DES. The results highlight the
importance of u-band observations, especially to discriminate between low (z <
0.5) and high (z ~ 3) redshifts, and the need for good observing sites, with
seeing FWHM < 1. arcsec. The former of these indications clearly favours the
LSST experiment as a counterpart for space observations, while for the other
experiments we need to exclude at least 15 % of the galaxies to reach a
precision in the photo-zs equal to < 0.05.Comment: 11 pages, to be published in MNRAS. Minor changes to match the
published versio
Events with Isolated Charged Leptons and Large Missing Transverse Momentum at HERA
Striking events with isolated charged leptons, large missing transverse
momentum and large transverse momentum of the hadronic final state were
observed at the electron proton collider HERA in a data sample corresponding to
a luminosity of about 130 pb-1. The H1 collaboration observed 11 events with
isolated electrons or muons and with transverse momentum above 25 GeV. Only
3.4+-0.6 events were expected from Standard Model (SM) processes. Six of these
events have a transverse momentum of greater than 40 GeV, while 1.3+-0.3 events
were expected. The ZEUS collaboration observed good agreement with the SM.
However, ZEUS found two events with a similar event topology, but tau leptons
instead of electrons or muons in the final state. Only 0.2+-0.05 events were
expected from SM processes. For various hypotheses the compatibility of the
experimental results was investigated with respect to the SM and with respect
to possible explanations beyond the SM. Prospects for the high-luminosity
HERA-II data taking period are given
Searching for galaxy clusters in the Kilo-Degree Survey
In this paper, we present the tools used to search for galaxy clusters in the
Kilo Degree Survey (KiDS), and our first results. The cluster detection is
based on an implementation of the optimal filtering technique that enables us
to identify clusters as over-densities in the distribution of galaxies using
their positions on the sky, magnitudes, and photometric redshifts. The
contamination and completeness of the cluster catalog are derived using mock
catalogs based on the data themselves. The optimal signal to noise threshold
for the cluster detection is obtained by randomizing the galaxy positions and
selecting the value that produces a contamination of less than 20%. Starting
from a subset of clusters detected with high significance at low redshifts, we
shift them to higher redshifts to estimate the completeness as a function of
redshift: the average completeness is ~ 85%. An estimate of the mass of the
clusters is derived using the richness as a proxy. We obtained 1858 candidate
clusters with redshift 0 < z_c < 0.7 and mass 13.5 < log(M500/Msun) < 15 in an
area of 114 sq. degrees (KiDS ESO-DR2). A comparison with publicly available
Sloan Digital Sky Survey (SDSS)-based cluster catalogs shows that we match more
than 50% of the clusters (77% in the case of the redMaPPer catalog). We also
cross-matched our cluster catalog with the Abell clusters, and clusters found
by XMM and in the Planck-SZ survey; however, only a small number of them lie
inside the KiDS area currently available.Comment: 13 pages, 15 figures. Accepted for publication on Astronomy &
Astrophysic
A PCA-based automated finder for galaxy-scale strong lenses
We present an algorithm using Principal Component Analysis (PCA) to subtract
galaxies from imaging data, and also two algorithms to find strong,
galaxy-scale gravitational lenses in the resulting residual image. The combined
method is optimized to find full or partial Einstein rings. Starting from a
pre-selection of potential massive galaxies, we first perform a PCA to build a
set of basis vectors. The galaxy images are reconstructed using the PCA basis
and subtracted from the data. We then filter the residual image with two
different methods. The first uses a curvelet (curved wavelets) filter of the
residual images to enhance any curved/ring feature. The resulting image is
transformed in polar coordinates, centered on the lens galaxy center. In these
coordinates, a ring is turned into a line, allowing us to detect very faint
rings by taking advantage of the integrated signal-to-noise in the ring (a line
in polar coordinates). The second way of analysing the PCA-subtracted images
identifies structures in the residual images and assesses whether they are
lensed images according to their orientation, multiplicity and elongation. We
apply the two methods to a sample of simulated Einstein rings, as they would be
observed with the ESA Euclid satellite in the VIS band. The polar coordinates
transform allows us to reach a completeness of 90% and a purity of 86%, as soon
as the signal-to-noise integrated in the ring is higher than 30, and almost
independent of the size of the Einstein ring. Finally, we show with real data
that our PCA-based galaxy subtraction scheme performs better than traditional
subtraction based on model fitting to the data. Our algorithm can be developed
and improved further using machine learning and dictionary learning methods,
which would extend the capabilities of the method to more complex and diverse
galaxy shapes
Minimum black hole mass from colliding Gaussian packets
We study the formation of a black hole in the collision of two Gaussian
packets. Rather than following their dynamical evolution in details, we assume
a horizon forms when the mass function for the two packets becomes larger than
half the flat areal radius, as it would occur in a spherically symmetric
geometry. This simple approximation allows us to determine the existence of a
minimum black hole mass solely related to the width of the packets. We then
comment on the possible physical implications, both in classical and quantum
physics, and models with extra spatial dimensions.Comment: 11 pages, 4 figure
Optimal filtering of optical and weak lensing data to search for galaxy clusters: application to the COSMOS field
Galaxy clusters are usually detected in blind optical surveys via suitable
filtering methods. We present an optimal matched filter which maximizes their
signal-to-noise ratio by taking advantage of the knowledge we have of their
intrinsic physical properties and of the data noise properties. In this paper
we restrict our application to galaxy magnitudes, positions and photometric
redshifts if available, and we also apply the filter separately to weak lensing
data. The method is suitable to be naturally extended to a multi-band approach
which could include not only additional optical bands but also observables with
different nature such as X-rays. For each detection, the filter provides its
significance, an estimate for the richness and for the redshift even if photo-z
are not given. The provided analytical error estimate is tested against
numerical simulations. We finally apply our method to the COSMOS field and
compare the results with previous cluster detections obtained with different
methods. Our catalogue contains 27 galaxy clusters with minimal threshold at
3-sigma level including both optical and weak-lensing information.Comment: 15 pages, 15 figures, accepted for publication in MNRA
Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}
Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)
Jet production in charged current deep inelastic e⁺p scatteringat HERA
The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS
Minimum length effects in black hole physics
We review the main consequences of the possible existence of a minimum
measurable length, of the order of the Planck scale, on quantum effects
occurring in black hole physics. In particular, we focus on the ensuing minimum
mass for black holes and how modified dispersion relations affect the Hawking
decay, both in four space-time dimensions and in models with extra spatial
dimensions. In the latter case, we briefly discuss possible phenomenological
signatures.Comment: 29 pages, 12 figures. To be published in "Quantum Aspects of Black
Holes", ed. X. Calmet (Springer, 2014
- …
