249 research outputs found

    Free-Range Pre-Programmed RC Car

    Get PDF
    There is a growing interest in the capabilities and utilization of autonomous vehicles. The objective of this project is to design a small scale illustration of an autonomous vehicle driven by user input. An application will be designed that will allow a user to create a track that an RC car will accurately follow. As the car follows the track, a microcontroller on the vehicle will send movement information back to the application. This information is used by the application to process where the vehicle is currently at and where it needs to go. While in motion, on-board sensors will actively detect obstacles in the path and adjust the vehicle’s direction to avoid collision

    Stress Increases Peripheral Axon Growth and Regeneration Through Glucocorticoid Receptor-Dependent Transcriptional Programs

    Get PDF
    Stress and glucocorticoid (GC) release are common behavioral and hormonal responses to injury or disease. In the brain, stress/GCs can alter neuron structure and function leading to cognitive impairment. Stress and GCs also exacerbate pain, but whether a corresponding change occurs in structural plasticity of sensory neurons is unknown. Here, we show that in female mice (Mus musculus) basal GC receptor (Nr3c1, also known as GR) expression in dorsal root ganglion (DRG) sensory neurons is 15-fold higher than in neurons in canonical stress-responsive brain regions (M. musculus). In response to stress or GCs, adult DRG neurite growth increases through mechanisms involving GR-dependent gene transcription. In vivo, prior exposure to an acute systemic stress increases peripheral nerve regeneration. These data have broad clinical implications and highlight the importance of stress and GCs as novel behavioral and circulating modifiers of neuronal plasticity

    A Targeted and Adjuvanted Nanocarrier Lowers the Effective Dose of Liposomal Amphotericin B and Enhances Adaptive Immunity in Murine Cutaneous Leishmaniasis

    Get PDF
    Background: Amphotericin B (AmB), the most effective drug against leishmaniasis, has serious toxicity. As Leishmania species are obligate intracellular parasites of antigen presenting cells (APC), an immunopotentiating APC-specific AmB nanocarrier would be ideally suited to reduce the drug dosage and regimen requirements in leishmaniasis treatment. Here, we report a nanocarrier that results in effective treatment shortening of cutaneous leishmaniasis in a mouse model, while also enhancing L. major specific T-cell immune responses in the infected host. Methods: We used a Pan-DR-binding epitope (PADRE)-derivatized-dendrimer (PDD), complexed with liposomal amphotericin B (LAmB) in an L. major mouse model and analyzed the therapeutic efficacy of low-dose PDD/ LAmB vs full dose LAmB. Results: PDD was shown to escort LAmB to APCs in vivo, enhanced the drug efficacy by 83% and drug APC targeting by 10-fold and significantly reduced parasite burden and toxicity. Fortuitously, the PDD immunopotentiating effect significantly enhanced parasite-specific T-cell responses in immunocompetent infected mice. Conclusions: PDD reduced the effective dose and toxicity of LAmB and resulted in elicitation of strong parasite specific T-cell responses. A reduced effective therapeutic dose was achieved by selective LAmB delivery to APC, bypassing bystander cells, reducing toxicity and inducing antiparasite immunity

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    The NASA Roadmap to Ocean Worlds

    Get PDF
    In this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find. The ROW team supports the creation of an exploration program that studies the full spectrum of ocean worlds, that is, not just the exploration of known ocean worlds such as Europa but candidate ocean worlds such as Triton as well. The ROW team finds that the confirmed ocean worlds Enceladus, Titan, and Europa are the highest priority bodies to target in the near term to address ROW goals. Triton is the highest priority candidate ocean world to target in the near term. A major finding of this study is that, to map out a coherent Ocean Worlds Program, significant input is required from studies here on Earth; rigorous Research and Analysis studies are called for to enable some future ocean worlds missions to be thoughtfully planned and undertaken. A second finding is that progress needs to be made in the area of collaborations between Earth ocean scientists and extraterrestrial ocean scientists

    \u3cem\u3eABCC9\u3c/em\u3e Gene Polymorphism Is Associated with Hippocampal Sclerosis of Aging Pathology

    Get PDF
    Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in the elderly but risk factors are largely unknown. We report the first genome-wide association study (GWAS) with HS-Aging pathology as an endophenotype. In collaboration with the Alzheimer\u27s Disease Genetics Consortium, data were analyzed from large autopsy cohorts: (#1) National Alzheimer\u27s Coordinating Center (NACC); (#2) Rush University Religious Orders Study and Memory and Aging Project; (#3) Group Health Research Institute Adult Changes in Thought study; (#4) University of California at Irvine 90+ Study; and (#5) University of Kentucky Alzheimer\u27s Disease Center. Altogether, 363 HS-Aging cases and 2,303 controls, all pathologically confirmed, provided statistical power to test for risk alleles with large effect size. A two-tier study design included GWAS from cohorts #1-3 (Stage I) to identify promising SNP candidates, followed by focused evaluation of particular SNPs in cohorts #4-5 (Stage II). Polymorphism in the ATP-binding cassette, sub-family C member 9 (ABCC9) gene, also known as sulfonylurea receptor 2, was associated with HS-Aging pathology. In the meta-analyzed Stage I GWAS, ABCC9 polymorphisms yielded the lowest p values, and factoring in the Stage II results, the meta-analyzed risk SNP (rs704178:G) attained genome-wide statistical significance (p = 1.4 × 10-9), with odds ratio (OR) of 2.13 (recessive mode of inheritance). For SNPs previously linked to hippocampal sclerosis, meta-analyses of Stage I results show OR = 1.16 for rs5848 (GRN) and OR = 1.22 rs1990622 (TMEM106B), with the risk alleles as previously described. Sulfonylureas, a widely prescribed drug class used to treat diabetes, also modify human ABCC9 protein function. A subsample of patients from the NACC database (n = 624) were identified who were older than age 85 at death with known drug history. Controlling for important confounders such as diabetes itself, exposure to a sulfonylurea drug was associated with risk for HS-Aging pathology (p = 0.03). Thus, we describe a novel and targetable dementia risk factor

    Finding a Disappearing Nontimber Forest Resource: Using Grounded Visualization to Explore Urbanization Impacts on Sweetgrass Basketmaking in Greater Mt. Pleasant, South Carolina

    Get PDF
    Despite growing interest in urbanization and its social and ecological impacts on formerly rural areas, empirical research remains limited. Extant studies largely focus either on issues of social exclusion and enclosure or ecological change. This article uses the case of sweetgrass basketmaking in Mt. Pleasant, South Carolina, to explore the implications of urbanization, including gentrification, for the distribution and accessibility of sweetgrass, an economically important nontimber forest product (NTFP) for historically African American communities, in this rapidly growing area. We explore the usefulness of grounded visualization for research efforts that are examining the existence of fringe ecologies associated with NTFP. Our findings highlight the importance of integrated qualitative and quantitative analyses for revealing the complex social and ecological changes that accompany both urbanization and rural gentrification

    Isoform Diversity and Regulation in Peripheral and Central Neurons Revealed through RNA-Seq

    Get PDF
    To fully understand cell type identity and function in the nervous system there is a need to understand neuronal gene expression at the level of isoform diversity. Here we applied Next Generation Sequencing of the transcriptome (RNA-Seq) to purified sensory neurons and cerebellar granular neurons (CGNs) grown on an axonal growth permissive substrate. The goal of the analysis was to uncover neuronal type specific isoforms as a prelude to understanding patterns of gene expression underlying their intrinsic growth abilities. Global gene expression patterns were comparable to those found for other cell types, in that a vast majority of genes were expressed at low abundance. Nearly 18% of gene loci produced more than one transcript. More than 8000 isoforms were differentially expressed, either to different degrees in different neuronal types or uniquely expressed in one or the other. Sensory neurons expressed a larger number of genes and gene isoforms than did CGNs. To begin to understand the mechanisms responsible for the differential gene/isoform expression we identified transcription factor binding sites present specifically in the upstream genomic sequences of differentially expressed isoforms, and analyzed the 3′ untranslated regions (3′ UTRs) for microRNA (miRNA) target sites. Our analysis defines isoform diversity for two neuronal types with diverse axon growth capabilities and begins to elucidate the complex transcriptional landscape in two neuronal populations
    • …
    corecore