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Abstract BR, TV, AH, AA 

 There is a growing interest in the capabilities and utilization of autonomous vehicles.  

The objective of this project is to design a small scale illustration of an autonomous vehicle 

driven by user input.  An application will be designed that will allow a user to create a track that 

an RC car will accurately follow.  As the car follows the track, a microcontroller on the vehicle 

will send movement information back to the application.  This information is used by the 

application to process where the vehicle is currently at and where it needs to go.  While in 

motion, on-board sensors will actively detect obstacles in the path and adjust the vehicle’s 

direction to avoid collision.   
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Problem Statement BR, TV, AH, AA 

 

Need BR, TV, AH, AA 

 The free-range pre-programmed RC car has many possibilities, ranging from 

entertainment to a small-scale representation of autonomous vehicles. The technology could be 

employed in various environments depending on the customer's need. An example would be an 

autonomous vehicle on a factory floor with scheduled tasks throughout the building. The track 

would be determined by user input from the PC application’s user interface. The input would 

then be converted into a readable form that directs the motion of an RC car. The vehicle would 

be able to detect obstacles to avoid collisions and also correct its course if necessary. After 

receiving the initial command, the vehicle would successfully complete its movement and then 

wait for a new order. 

 

Objective BR, TV, AH, AA 

The objective of the project is to have a remote controlled vehicle be able to 

autonomously maneuver along a desired path set by the user. An application will be created on a 

personal computer that allows the user to view the different performance characteristics of the 

vehicle and to design the path of the vehicle. The program will allow the user to select between 

several premade track pieces and connect them into the shape of the desired path. The user will 

be able to select track pieces that will then be appended one by one to the current location in the 

track. These tracks can also be saved and reloaded at will by the user. After executing the track, 

the information of the user-designed path will be wirelessly transmitted to the vehicle. The RC 

car will then follow this track at a given velocity while avoiding any potential collisions.  
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Research Survey BR, TV, AH, AA 

One option for the application is building it using C++, Qt libraries, and Windows APIs.  

Qt has libraries that assist the development of both Wi-Fi and Bluetooth communication. The 

application will instantiate communication to the vehicle and continue doing so until the 

application is powered down. Algorithms will be constructed inside the code to calculate the data 

that needs to be sent to the vehicle to control the motor and sensors. Error handling will also 

have to be implemented to keep the vehicle on the determined path. If the vehicle strays off 

course, the error handling will guide the vehicle back onto the proper path. In addition to error 

handling, the car will also have to avoid colliding with obstacles in the path. 

Using Bluetooth as a means of communication between the application and the vehicle 

provides both advantages and disadvantages. The main advantage of using Bluetooth is the cost 

and power efficiency of operation. When compared to Wi-Fi communication, the amount of 

power consumption for Bluetooth is significantly less. According to a comparative study 

performed by Oriana Riva from ETH Zürich and Jaakko Kangasharju from Helsinki University 

of Technology, the consumption of power in several Nokia cell phones was more than 100 times 

greater when using Wi-Fi as compared to using Bluetooth [4]. The reason for this significant 

difference in power consumption is directly related to the vast difference in data transfer rate. 

The theoretical data transfer rate for Bluetooth is nearly 11 times slower than Wi-Fi data transfer 

[4]. However, if the group wanted to incorporate video communication or derive complex sensor 

data, Wi-Fi communication would be better suited for higher data transfer rates. According to 

IEEE standard 802.15.1-2005, the effective range for Bluetooth communication is between 1 

meter and 100 meters, depending on the class of Bluetooth device used [1]. The application will 

limit the maximum range the vehicle can be away from the user, thus helping to eliminate 

problems the vehicle will have with losing communication. If communication with the vehicle is 

lost, a mechanism will be hardwired into the vehicle to shut the motors off. 

One of the main limitations of the design of the project is that the user can only choose 

between premade track pieces, which limit the user’s ability to control the vehicle to go wherever 

the user pleases. The vehicle will only be capable of following the distances and curve angles of 

the premade track pieces, and not be able to make sharp or gradual turns. Despite this limitation, 

there should ideally be a wide enough selection of track pieces for the user to design whatever 

track he or she desires. While this is a limitation, it was a strategic decision by the designers to 

develop the interface as such. The program will be able to better track the position of the vehicle 

by only allowing it to travel at certain speeds and turn at certain angles. Without this limitation, 

the program would have to handle and compensate for the error of invalid maneuvers. The 

predetermined pieces have already been tested and are known to not cause error with the vehicle. 

A limitation of the current technology is that similar programs for remote control vehicles 

are made almost exclusively for Apple and Android products. By being designed on these 

operating systems, this product can only be operated on either Apple or Android devices, 

meaning they can only be run using smart phones and tablets. With the designers choosing to use 

a Windows application, the program for the vehicle could be used on a desktop computer with 

Windows. By using Windows as the operating system, the vehicle and program will have more 

of a marketable value, considering that most companies use Windows in their offices. 

 Design teams at the University of California have developed robotic vehicles that follow 

the same general concept that will be used in making this project. By using off-the-shelf 

components, the UC design teams have been able to create several different autonomous vehicles 

incorporating Android operating systems, Arduino electronic boards, and R/C vehicles [3]. 
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Through utilizing off-the-shelf components, they were able to cost-effectively create an 

autonomous system where sensors and other electronic components could be added without 

needing extra fabrication. To communicate between the Android operating system and the 

vehicle, a Bluetooth connection was established to transmit/receive data. A C++ application was 

written to allow communication between the Android operating system and a desktop computer 

over Wi-Fi. Through UDP packets, information such as video transmission, sensor signals, and 

GPS locations can be transmitted between the Android operating system and desktop application 

[3].   

One patented technology that is very similar to our idea is a remote controlled toy device 

that uses a single chip main control unit. Its developer, Zhang Fengchuan of China, created a 

processor chip that collects video data and transmits a compressed signal over a Wi-Fi 

communication channel.  By adding this chip onto a remote controlled toy, the user can control 

the toy using a smart phone, tablet, or personal computer. The chip receives the input controls 

from the user, relays the information to the motors, LED lights, and related electrical control 

components, and transmits measured data back to the user interface [2]. The design team would 

like to implement a system similar to this processor chip in our vehicle. Being able to wirelessly 

translate commands from an application-based system to the hardware of the vehicle is the 

ultimate goal of this project. Rather than designing a processing chip to do this, the group would 

prefer to use off-the-shelf components to implement the same process.   

 Another patent that relates to our project idea is a wireless system that was developed to 

control an R/C car via a handheld game player device. Inventor Patrick Tze Man Ho was able to 

achieve this by combining a game cartridge and a message transmitter. The user will be allowed 

to control the R/C car with the handheld gaming device, and have the display screen of the 

gaming device show functionalities to and for the remote control unit. The transmitter would 

send a radio frequency to a receiver on the vehicle.  Using the gaming device, the user would be 

able to control the speed and direction of the R/C car [6]. This process of wireless 

communication is the ultimate goal of the group, but the means of making the communication 

between the vehicle and the user interface will be slightly different. Rather than using radio 

frequency, the group will be using Bluetooth or Wi-Fi communication. 
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Marketing Requirements BR, TV, AH, AA 

• The RC car should follow the designed track accurately 

• The program should be able to run on Windows PCs 

• The RC car should have a reasonable battery length 

• The RC car should avoid collisions 

• If off-track, the RC car should auto-correct 

• The program’s GUI should be simple to use 

• The application should take up as little memory/resources as possible 

• The system should be affordable 

• The parts should be interchangeable 

• The system should be lightweight and portable 
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Objective Tree BR, TV, AH, AA 

 

 
Figure 1: Objective Tree 
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Design Requirements Specification 
 

Engineering Requirements BR, TV, AA 

 
In order to allow for the marketing requirements to be realized, there needs to be a set of 

engineering requirements that need to be created that will allow for the vehicle and its system to 

fulfill the requirements desired by the customer.  By analyzing the requirements requested by the 

customers, the group must determine how the best method of satisfying these requirements can 

be achieved.  Without detailing how the goals will be achieved, the group must unambiguously 

state what goals and requirements the vehicle, the communication, and the PC must reach.  These 

engineering requirements need to be made not only to give a verifiable, traceable specification 

for the vehicle to achieve, but also to set limitations on the maximum performance of the vehicle.  

Below, the group will explain the engineering requirements they have determined for the Free-

Range Pre-Programmed RC Car system, and show how they relate back to and achieve the 

marketing requirements.  The engineering requirements and marketing requirements are also 

compared in a tradeoff matrix, which demonstrates how increasing or decreasing one parameter 

affects the other.  The requirements table and tradeoff matrix are found as Figures 2 and 3, 

respectively. 
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Figure 2: Engineering Requirements Table 
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Requirement Matrix 

 

 
 

Figure 3: Engineering/Marketing Requirement Tradeoff Matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Accepted Technical Design

 
Overview BR, TV, AH, AA 

  

 The general idea of the program is to take the user’s desired track and replicate it through 

the RC car.  In order to accomplish this, a combination of hardware and software will be needed. 

Figure 4 is a level 0 block diagram of the system, which illustrat

system.  The functional requirement table for this block diagram is contained in Table 1. 

 

Figure 4: Level 0 Block Diagram

 

Module RC System

Inputs - User Track Input

- Car Position

Outputs - Direction

- Speed 

- Distance

Functionality User inputs a track design into the RC system that can compute and 

relay distance, speed, and direction to the RC car.  The car position is 

relayed back to the RC system.

 

Table 1: Level 0 Functional Requirement Table

 

 In order to ease the design process, the RC system was broken down into functional 

components. These components were divided and grouped according to functionality and each 

component has its own inputs and outputs.  These components and their connections are 

represented in Figure 5.  Each component’s functionality is broken down in Table 2.
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Accepted Technical Design  

The general idea of the program is to take the user’s desired track and replicate it through 

the RC car.  In order to accomplish this, a combination of hardware and software will be needed. 

Figure 4 is a level 0 block diagram of the system, which illustrates the simplest view of the 

system.  The functional requirement table for this block diagram is contained in Table 1. 

Figure 4: Level 0 Block Diagram 

RC System 

User Track Input 

Car Position 

Direction 

 

Distance 

User inputs a track design into the RC system that can compute and 

relay distance, speed, and direction to the RC car.  The car position is 

relayed back to the RC system. 

Table 1: Level 0 Functional Requirement Table 
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Figure 5: Level 1 Block Diagram 

 

Module Level 1 RC System Functionality 

Inputs - User 

- Sensor Input 

Outputs - Direction 

- Speed 

- Distance 

Functionality After the user selects a desired path for the vehicle to follow, the track 

file is sent through a parsing program, which breaks the track down 

into individual movement instructions for the car. These instructions 

are transmitted as a command signal to the car, which begins moving.  

As the vehicle moves, its position is monitored by the onboard IMU, 

which sends the vehicle’s position signal back to the program. If the 

collision detection sensor is activated by the vehicle approaching an 

unanticipated object, the sensor input is used to alert the vehicle that it 

needs to adjust its path. Through the IMU and sensor feedback, the PC 

program corrects the path of the vehicle. This corrected path is then 

transmitted back to the vehicle, which adjusts its path according to the 

new car instructions. 

 

Table 2: Level 1 Functional Requirement Table 
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Qt Basics BR 

 

 Qt is an open-source development tool that will be used in conjunction with C++ in order 

to accomplish useful tasks that would otherwise be extremely complex or even impossible. There 

are numerous libraries that Qt provides, each helping to ease the complexity of certain tasks. In 

addition, Qt also provides numerous objects that can either be used to override basic C++ objects, 

like a string or vector. Each of Qt’s classes has a name that begins with ‘Q’, such as ‘QString’ or 

‘QMap’. This allows a programmer to easily differentiate whether a given object is from base 

C++ libraries or from Qt libraries. 

 

 Many of Qt’s functionalities are abstract, requiring pointers to base classes instead of 

specific objects. This allows users to very easily inherit from base classes while still preserving 

the functionality that Qt provides. Throughout the application, numerous objects will inherit 

from some of the various Qt base classes, and many of the functions that will be used will be 

defined by these base classes. 

 

 Qt also provides an application to help with the creation of a dialog or widget. This 

program, called QtDesigner, allows the user to simply drag and drop other widgets into the 

dialog being created. The end result is a file with extension ‘ui’. This file will then be compiled 

along with the other header and source files and turned into a header file of its own, detailing a 

‘UI’ class that is equivalent to the dialog created in QtDesigner. This header file can be included 

in the header file of whatever dialog it was made for, and this dialog’s class will store a ‘UI’ 

object in order to allow access to the various widgets created in QtDesigner. 

 

 The most important use of Qt in this application will be the signals and slots system. 

Signals and slots are new types of functions introduced by Qt which, when working together, act 

like an interrupt written directly into the C++ code. One of the major uses of this system is the 

allowance for a child class to directly talk to the parent class that holds it. When an object needs 

to send a signal to any object that receives it, it calls the signals function using the emit keyword. 

This will then emit the signal to anything that is listening. When an object listening for this 

signal receives it, it will immediately call the slot attached to the signal, no matter what was 

happening previously. Signals and slots can be connected to each other using the global connect() 

function defined by Qt’s core libraries. In addition, in order for an object to use signals and/or 

slots, the ‘Q_OBJECT’ macro must be defined in the class’s definition. 

 

 Qt will be directly integrated into every aspect of the application, and will even appear 

throughout the pseudo-code. Signals and slots will be primarily used in two areas: the user 

interface, in order to connect specific buttons to specific functionalities, and for exchanges 

between the communication and track parser components [7]. 
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Graphic User Interface BR,TV 

 
 The user interface is responsible for obtaining and translating user input in order to create 

a usable track.  Dialogs are to be created using Qt libraries which will process inputs and update 

the display accordingly.  The end goal of this component is to create a track file which will be 

written in JSON format. 

 

 The application’s main window should contain the usual menus in the top left.  Below the 

menus, there will be toolbars with various shortcuts for convenience. Qt’s main window class 

will assist in the creation of these menus and toolbars.  The main window will also have a track 

view and track piece selector.  Figure 6 shows the general design layout of the main window. 

 

 
Figure 6: Main Window Design 

 

 The track view seen in the middle of Figure 6 displays the track pieces as they are placed.  

When a new document is created, a blank view is displayed. In order to add track parts, the user 

will click on various pieces in the part selector on the bottom of Figure 6. When hovering over a 

piece in the track selector, the track view should show a translucent view of what the piece 

would look like if added. Tracks can be saved and loaded, defaulting to the user’s documents 

folder.  When a previously created track is loaded, the track view will display the track in its 

entirety and automatically place the user at the end of the track. 

  

 The part selector should also have the capability to allow the user to traverse back though 

the track without deleting pieces by using the left and right arrows seen in Figure 6.  The ability 

to traverse though the track would allow the user to make changes to the middle of the track. 

This traversal ability will be implemented in two ways. The arrows in the track selector will 



16 

 

navigate through the track one by one. The user should also have the ability to click on a track 

piece, automatically selecting it. When adding a track piece, it will append it to whatever the 

currently selected piece is. In addition, the track selector will also need a delete function that 

would remove the currently selected track. 

 

 The background of the track view will be a grid format in specific increments that will 

allow the user to better visualize and lay out the track. In addition, this will also help to get a 

better grasp of the distance the vehicle will travel.  The track view will also need the ability to 

zoom in and out, allowing the user to either view more of the track at once or to look at a specific 

piece more closely. Additionally, by clicking and dragging on either end of a track piece, the 

user should be able to extend or retract that piece, allowing for more customization. 

  

 Lastly, this component will also need to be able to create a track file based on the track 

currently in the track view.  This file will be in JSON format with each track piece being its own 

object and containing the track’s specifications.  The application should also be able to read 

JSON files and populate the track view based on what the file contains.  Figure 7 shows a 

simplistic example of what a track file may look like. 

 

 
Figure 7: JSON Track File Example 
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 Figure 8 shows a level 2 block diagram for this component.  Table 3 shows the 

functionality requirements for this component. 

 

 
 

Figure 8: Level 2 User Interface Block Diagram 

 

Module User Interface 

Inputs - User 

Outputs - Track File 

Functionality At the user interface, the user will be allowed to create a customized 

track for the vehicle to follow.  This track is created by the user 

selecting between vast arrays of track pieces found in the part selector.  

Once selected, the track pieces are placed in sequential order, creating 

the complete track.  This track will be shown in the track view window.  

Pieces can be edited in the part editor window, where the user can 

adjust the length of the piece, as well as the speed of the vehicle.  Once 

the user is satisfied with the track, the user can send the program to the 

vehicle to execute.  To do this, the vehicle track is saved as a file, and 

the track file is sent to the track parser.        

 

Table 3: User Interface Functional Requirement Table 
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 All of the functionality required to implement the user interface can be implemented 

through three classes that inherit from various Qt classes. The classes and their interactions can 

be seen in Figure 9. 

 

 
Figure 9: User Interface Class Diagram 

 

 At the bottom of the diagram is the TrackItem class. This class, which inherits from 

QGraphicsItem, represents a single track piece in the UI. QGraphicsItems are any object that can 

be placed in a QGraphicsScene, allowing for the visualization of movable objects to the user. 

Typically, these items are not kept in any order, but in the case of this project, the track pieces 

must be kept in a specific order; otherwise, the track pieces will be executed incorrectly. To 

maintain the order of the track pieces, each track piece will hold a pointer to both the previous 

track piece and the next track piece in the track. These pointers can be accessed through the prev() 

and next() functions shown in Figure 9. If the previous and/or next track piece in the track does 

not exist, signifying that the current track piece is either the beginning or end of the track, then 

these functions will return NULL. Pseudo-code for the TrackItem class can be found in Figures 

10 and 11. 

 

 

 

 



 

Figure 10: TrackItem.h Pseudo
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Figure 10: TrackItem.h Pseudo-code 
 



 

Figure 11: Trac
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Figure 11: TrackItem.cpp Pseudo-code 
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In order to hold all of these TrackItems, as well as allow for simple addition, removal, 

and navigation of various track pieces, the TrackView class is necessary. This class inherits from 

QGraphicsView and holds a QGraphicsScene as a member variable. By overriding 

QGraphicsView, the graphics scene and view are much more customizable to the needs of our 

project.  

 

In addition, this custom class is also able to manage the selected track piece. By storing a 

pointer to a TrackItem object, the TrackView has easy access to whatever track piece the user is 

currently working with, as well as the previous and next track pieces. If any track piece in the 

graphics scene is clicked on, it will send a signal to the TrackView. The TrackView will then 

shift its currently selected piece to this newly selected piece. This allows the TrackItem object to 

be blind to which track piece is currently selected, while TrackView does whatever track 

management is necessary. 

 

The last advantage to this TrackView class is the ability to write ease of access functions. 

Instead of repeating the same code to add a track piece multiple times in the MainWindow, the 

TrackView can instead have simple functions for the addition, removal, or selection of a track 

piece. The more specialized each object is, the easier it is to navigate the code and find the cause 

of a potential issue. The pseudo-code for the TrackView class can be found in Figures 12 and 13. 

 

 
Figure 12: TrackView.h Pseudo-code 
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Figure 13: TrackView.cpp Pseudo-code 

 

The MainWindow class, which inherits from the QMainWindow class, will not only act 

as a controller between the user and the application, but will also act as a controller of the 

application as a whole. All of the various buttons and widgets that encompass the dialog will be 

placed into this class, and the signals and slots that allow them to interact will be connected 

through the MainWindow as well. This dialog will be active at all times, assisting the user with 

the creation and execution of a track file. In order to ease the creation of this class, QtDesigner 

will be used. Pseudo-code for the MainWindow class can be found in Figures 14 and 15. 
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Figure 14: MainWindow.h Pseudo-code 
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Figure 15: MainWindow.cpp Pseudo-code 
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 The visualization of an individual track piece in the TrackView requires complex 

trigonometric and geometric calculations. Each track piece must be two-dimensional instead of a 

simple straight line, meaning that the track piece must have a width, which will cause both an 

inner and outer track. In order to draw the curved lines that make up these inner and outer tracks, 

numerous potential methods could be used. It was decided to make use of the arcTo() function 

defined by the QGraphicsItem base class, which TrackItem inherits from. 

 

 This arcTo() function requires information that is not immediately available without 

specific calculations. Each track piece stores its own starting position in the TrackView grid, as 

well as its turn angle, length, and its starting orientation angle. Figure 16 shows the required 

metrics and the usage of the function. 

 

 
Figure 16: QGraphicsItem::arcTo() Function 

 

 The blue line shows what the resulting arc will look like with the given parameters. The 

sweep angle is equivalent to the inverse of the turn angle, since right turns are seen as positive in 

the case of a TrackItem. In addition, the start angle can be calculated based on the angle of 

orientation. In the case of a TrackItem, an orientation of 0° represents the left edge of the circle 

in Figure 16, or 180° in the arcTo() system. 

 

  Beyond the sweep angle and starting angle, the square that encompasses the circle being 

travelled must be given. In order to find this square, the top-left corner and the width of the 

square must be found. As Figure 16 suggests, the width of the square will simply be twice the 

radius of the circle being travelled, meaning that two parameters must be found: the top-left 

corner of the square, and the radius of the circle. 

 

 Figure 17 shows how to calculate the radius given the turn angle and length of the track 

piece. As the figure suggests, the length of a track piece is based on the maximum distance it 

travels above the y-axis, instead of the length of the arc itself. 



 

 Finally, with the radius calculated, the top left

circle can be found. 

 

Using Figure 18, equations can be formed to find the location of the top
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Figure 17: Radius Calculation 

 

Finally, with the radius calculated, the top left- corner of the square encompassing the 

 
Figure 18: Top Left Calculation 

 

Using Figure 18, equations can be formed to find the location of the top-left corner.

 

 

corner of the square encompassing the 

left corner. 
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 Finally, with all of the pieces in place, the track pieces can be placed into a 

QGraphicsScene. Simulations were run to ensure that all of the calculations came out correctly. 

The result is a prototype of what the TrackView may look like, shown in Figure 19. 

 

 
Figure 19: TrackView Simulation 

 

 In the figure, the blue line represents the x-axis while the red line is the y-axis. The first 

track piece placed is the straight line that starts where these two axes meet. This track piece goes 

straight up the y-axis, while the inner and outer lines are a specific distance away from the 

track’s line, creating a visible rectangle. 

 

 Finally, when the track is saved by the user, each track piece is analyzed in order, and the 

necessary data for each piece is stored into the saved JSON format file. This file can then be used 

in two locations: reloading the file into the user interface in order to view or edit it, or executing 

the track with the Track Parser. 
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Track Parser BR, TV, AH, AA 

 
 The track parser’s main goal is to take the track file and turn it into instructions that the 

microcontroller on the vehicle can interpret. This means that the component will need a method 

to parse the file and to turn each track piece into a series of instructions that the microcontroller 

on the vehicle can understand. These instructions are to be put into a vector and sent to the data 

transmission component. 

 

 In order to parse the track file, the component will need to be able to translate the JSON 

data into individual track pieces.  These track pieces will need to be stored in a vector so that 

they remain in the order that they were given. Once the data transmission asks for the next track 

piece, the corresponding track piece will be converted to instructions. 

  

 The instructions that the converter creates will be specifically formatted and will contain 

a series of values that will correspond to voltages that the microcontroller will have to apply to 

different pins to run servos and motors, as well as the time that these voltages need to be applied. 

Figure 20 shows the level 2 diagram block diagram for the track parser and Table 4 shows the 

functional requirements for the component. 

 

 
 

Figure 20: Level 2 Track Parser Block Diagram 

 

Module Track Parser 

Inputs - Track File 

Outputs - Car Instructions 

Functionality The track file created by the user on the interface is sent through a 

parsing file, which breaks the track down into several smaller 

commands.  These commands are then encoded as binary messages and 

are transmitted to the micro-controller as the car instructions. 

 

Table 4: Track Parser Functional Requirement Table 
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To create the instructions, the converter will use the information given for each track 

piece and run a series of equations. The known information about each track piece is the length, 

angle, and turn direction. First, the converter will calculate the instructions for the drive train 

motor. The radius of the turn angle can be found by using the following equation: 

 

�� �
�

sin 	
�
 

 

In this equation, L is the length of the track piece, and 
 is the angle of the track piece. Once the 

radius is found, the circumference can be found. The circumference can be found using the 

following equation: 
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The wheel circumference is also needed and can be calculated using the equation: 
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In this equation, �� is the radius of the car wheel, which is a measurable quantity. Then, the arc 

length of the turn can be calculated by using the equation: 

 

� �  



360
�� 

 

The wheel circumference is also needed and can be calculated using the equation: 
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After A and WC are calculated, the number of revolutions that the wheel will need to rotate to 

achieve the correct arc length can be calculated using the equation: 
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The velocity that the vehicle is to travel will be predetermined in the software. The motor has to 

be tested at different voltages so that a graph can be created that relates the voltage to the 

revolutions per minute. To find the needed revolutions per minute needed, the following 

equation can be used: 

��� �
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The desired revolutions per minute can then be related to the voltage to find the voltage value 

that needs to be applied to the motor. To determine the amount of time this voltage needs to be 

applied the following equations can be used: 
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The time value will be in seconds.  Also the angle that the turning wheels need to be to make the 

desired turn for the track piece needs to be converted to instructions. The turn direction will be 

used to tell the servo whether to turn right or left. To calculate the angle of the wheels, the 

turning radius needs to be calculated again. The length of the car will also need to be measured. 

Once the radius and the length of the car are found, the angle of the wheels can be found using 

the equation: 
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A graph will also need to be created that relates the servo movement to the angle of the turning 

wheels. The calculated angle will then be converted into a voltage that will move the servo to the 

correct position. After all of these instructions are created, they will be sent to the data 

transmission component. 

 

To simulate the creation of track pieces and the way that the car will move with this 

information, a script was created in Matlab that allows for the creation of a track by connecting 

various points in a graph. An algorithm was created that takes this path as well as a given 

velocity, and turns it into the resulting path to be followed by the “RC car”. The Matlab script 

and its various functions can be seen in Appendix Figure 1. 

 

 The predetermined path is created using two arrays, which hold the x and y points of the 

path. The traveling object will move from point to point in sequential order, simulating the RC 

car following track pieces. In this simulation, the traveling object must move one instance of the 

given velocity before it is given a new direction. After each of these movements, it will then 

check to see if it passed the current target point. If it did, it will head toward the next target point.  

 

Figure 21 displays the program simulating a half-circle with the traveling object moving 

with a velocity of 1. It is important to note that it will sometimes pass a point entirely before 

realizing this and heading for the next. Figure 22 shows the same track when the velocity is 

reduced to ½. In this simulation, the traveling object moves along the path more accurately 

because it has more time to realize that it has passed a target point. 

 



 

Figure 21: Half Circle with Traveling Velocity of 1

Figure 22: Half Circle with Traveling Velocity of 0.5

 

 

Figure 23 showcases the ability of the Matlab simulation to head in any direction, 

regardless of forward movement. Once again, when the velocity is lowered from 1 as it is in 

Figure 23 to ½ as it is in Figure 24, the traveling object moved along the desired path more 

accurately. 
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Figure 21: Half Circle with Traveling Velocity of 1 

 

 

Figure 22: Half Circle with Traveling Velocity of 0.5 

Figure 23 showcases the ability of the Matlab simulation to head in any direction, 

regardless of forward movement. Once again, when the velocity is lowered from 1 as it is in 

n Figure 24, the traveling object moved along the desired path more 

 

 

Figure 23 showcases the ability of the Matlab simulation to head in any direction, 

regardless of forward movement. Once again, when the velocity is lowered from 1 as it is in 

n Figure 24, the traveling object moved along the desired path more 



 

 
Figure 23: Jagged Path with Traveling Velocity of 1

Figure 24: Jagged Path with Traveling Velocity of 0.5
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Figure 23: Jagged Path with Traveling Velocity of 1 

 

 

Figure 24: Jagged Path with Traveling Velocity of 0.5 
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Data Transmission  BR, AA, AH 

 

 One of the key aspects of the entire system will be the ability to both transmit and receive 

data between both the application and the vehicle’s microcontroller. This will be done using Qt 

networking libraries that open a serial stream that allows free communication between terminals. 

Several different commands will be encoded and sent. In order to both send and receive these 

packets, a transceiver will be connected to the PC using the application. In addition, this 

component must be able to decode any messages sent from the RC vehicle itself, and it must 

react accordingly. 

 

Bluetooth was chosen due to a variety of factors. Bluetooth operates on the 2400-2483.5 

MHz band, which is a regulated band used in a variety of fields. Bluetooth transmits data in 

packets of divided input data. A packet is sent on a clock-by-clock basis that allows for packet 

acknowledgment. This technique allows for reliable connections in open-air environments. Ease 

of use was another factor that led to Bluetooth being chosen. Bluetooth works with a master-

slave relationship. In the case of this project, the computer terminal will act as the master while 

the vehicle will act as the slave. Finally, two technical parameters are important in Bluetooth 

functionality. Bluetooth works with relatively low power requirements while providing fast data 

transfer rates. There are three classes of Bluetooth. Class 2 was chosen for this project as it has 

versatile transmission range of 10 meters and moderate power consumption.. 

 

The transceiver will also be receiving signals from the vehicle during this time. Some of 

these signals will simply be update signals, or “UPD” signals, while some of them will be a 

collision detection signal. The network code will have to be able to interpret what kind of 

response signal was sent, and whether or not collision avoidance is needed. Figure 25 displays 

the Level 2 Block Diagram for this component, and Table 5 shows the corresponding Functional 

Requirement Table. Also, a diagram of communication flow is shown below in Figure 26. 
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Figure 25: Level 2 Communication Block Diagram 

 

Module Communication 

Inputs - Car Instructions 

- Response Signal 

Outputs - Collision Signal 

- Command Signal 

Functionality Once the PC algorithm determines the instructions for the car, the 

signal is transmitted through the network code to the Bluetooth 

transceiver.  The signal received by the Bluetooth transceiver is the 

vehicle command signal, which is relayed to the micro-controller.  The 

vehicle’s response signal, which is the IMU information and the 

collision signal, is transmitted through the Bluetooth transceiver to the 

network code.  This signal is then broken down by the digital decoder, 

which gives the feedback collision signal to the PC algorithm. 

 

Table 5: Communication Functional Requirement Table 
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Figure 26: Data flow across communication system. 

 

  



 

The vector of encoded track pieces created by the track parser must be sent to the 

vehicle’s microcontroller one at a time. The vehicle will process each of these instructions for a 

set amount of time—enough to ensure that track piece instructions won’t overlap. This, 

combined with request commands from the vehicle, will ensure that the vehicle receives a single 

instruction that is up-to-date with the current course correction parameters.

failsafe, the incoming commands will be stored locally on the vehicle. The application located on 

the terminal is being written within the QT framework using C++. Below in Figures 27 and 28, 

the header and source pseudo-code files are shown

communications code. Qt's built-

functionality. 

 

Figure 27: Pseudo
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The vector of encoded track pieces created by the track parser must be sent to the 

vehicle’s microcontroller one at a time. The vehicle will process each of these instructions for a 

enough to ensure that track piece instructions won’t overlap. This, 

combined with request commands from the vehicle, will ensure that the vehicle receives a single 

date with the current course correction parameters. To add another 

failsafe, the incoming commands will be stored locally on the vehicle. The application located on 

the terminal is being written within the QT framework using C++. Below in Figures 27 and 28, 

code files are shown displaying the potential plan to develop the 

-in libraries will be referenced to create code with the necessary 

 

 

Pseudo-code header file for Qt Bluetooth communication

The vector of encoded track pieces created by the track parser must be sent to the 

vehicle’s microcontroller one at a time. The vehicle will process each of these instructions for a 

enough to ensure that track piece instructions won’t overlap. This, 

combined with request commands from the vehicle, will ensure that the vehicle receives a single 

To add another 

failsafe, the incoming commands will be stored locally on the vehicle. The application located on 

the terminal is being written within the QT framework using C++. Below in Figures 27 and 28, 

displaying the potential plan to develop the 

in libraries will be referenced to create code with the necessary 

 

for Qt Bluetooth communication 



 

Figure 28: Pseudo
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Pseudo-code source file for Qt Bluetooth communication

 

ource file for Qt Bluetooth communication 
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RC Vehicle  AA, AH 

 

 In order to accomplish the goal of following a user-created track, a vehicle needs to be 

created that can receive the parsed track data and convert that into the physical movement of the 

vehicle.  For this application, an RC car was chosen as the best option of vehicle.  An RC car is 

an inexpensive, low-power option for a vehicle that can be easily tested out in an indoor 

laboratory setting.  The RC vehicle that was used in this experiment was a simple childhood toy 

of one of the members of the design team.  After stripping the remote control components off the 

car, the only electronics that remained intact were the 3.3V DC motor that drove the rear wheels, 

and the rotational servo motor that turned the front wheels.  The Level 2 Block diagram and 

functional requirement table for the vehicle are shown below in Figure 29 and Table 6. 

 

 

 

 

 

Figure 29: Car Level 2 Block Diagram 
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Module RC Car 

Inputs - Command Signal 

- Object Detected 

- Power Source 

- Motor Shield Power Source 

Outputs - Response Signal 

Functionality The power source and the motor shield power source supply the power 

necessary to operate the micro-controller and the motor shield.  The 

command signal input communicates a binary-coded message from the 

PC to the micro-controller, which distributes the necessary voltages to 

the servo and motor through the motor shield to control the speed and 

direction of the car.  An object detection signal is relayed to the micro-

controller from the collision sensor.  This detection signal and the GPS 

location are sent back to the PC as the response signal.  The response 

signal is broken down and analyzed by the PC algorithm, and is 

returned to the car as the command signal. 

 

Table 6: Car Functional Requirement Table 

 

 Once the car was stripped of the old electronics, the new electronics were added onto the 

vehicle.  The foundation of the new vehicle is the microcontroller.  The microcontroller acts as 

an intersection between input and output signals and the required response.  The vehicle will use 

an Arduino Mega 2560 microcontroller.  This microcontroller was chosen for this application 

because it has 54 digital IO pins, 16 analog IO pins, 256k of memory, and runs off a 16 MHz 

clock.  This board has more than enough IO pins to run all the onboard electronics, has sufficient 

memory for programming, and meets the low power requirements desired by the engineering 

requirements.  The microcontroller layout is diagramed in Figure 30.  Also, the wiring pinout 

required by the onboard embedded components can be found as Figure 31.  These pin 

requirements will be explained later. 
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Figure 30: Microcontroller Layout 
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Figure 31: Arduino Mega 2560 Microcontroller Pinout 

 

 

 This microcontroller will be coupled with a motor shield, namely the Adafruit Motor 

Shield V2.  The motor shield is a specialized full-bridge driver that steps up the input voltage and 

current to match the needs of the DC motors driving the vehicle. The motor shield takes input 

signals from the microcontroller and provides the correct gain to properly drive the motor. The 

signals to drive the motors would be determined by the PC and sent to the microcontroller. This 

information would include encoded instructions that the microcontroller would pass on as 

voltage signals to the motors.  The pin requirements for the Motor Shield can be found on Figure 

32.  These pin requirements will also be explained later.   
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Figure 32: Adafruit Motor Controller Pinout  

 One of the most significant functions of the RC vehicle is wireless communication.  

Communication for between the vehicle microcontroller and the PC was determined to be over 

the Bluetooth frequency band.  Using a Bluetooth transceiver, the RC vehicle would send motor 

and servo commands to the vehicle, and report sensor information to the PC with the 

microcontroller acting as a middleman.  The pinout for the Bluetooth communication device can 

be found below as Figure 33.    

 
Figure 33 – Bluetooth Pinout Diagram 
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 Along with the microcontroller, motor shield, and Bluetooth transceiver, there are several 

more pieces of embedded hardware that are used on the vehicle.  An important portion of the 

embedded hardware is the inertial measurement unit (IMU). The inertial measurement unit 

chosen for this project has an onboard gyroscope, accelerometer, and compass. Using a filter, 

which will be explained in greater detail in the Collision Detection/Avoidance section, an 

accurate location can be determined in real-time to determine variation from the given track. This 

location is based on the acceleration and velocity determined by the accelerometer and the 

direction determined by the compass. If this occurs, algorithms would execute that compute a 

corrective movement for the vehicle. If the vehicle strays from the track, this information will be 

used to determine how to return to the desired path.  The pinout for the IMU device can be found 

below as Figure 34.  

 

 
Figure 34 – Internal Measurement Unit Pinout Diagram 
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 Another sensor that could be used to determine vehicle state would be a GPS module. 

The module would be used to track the current location of the vehicle.  Initially, the GPS unit 

was intended to be used to track the actual position of the vehicle as it moved along the track.  

However, the unit was not able to provide precise enough positional feedback, so the IMU was 

used in its place for that purpose.  The GPS was left connected to the vehicle circuit for future 

applications.  The GPS device pinout can be found below as Figure 35. 

 

 
Figure 35 – GPS Pinout Diagram 

 

  

 In order to provide enough power to supply the motors, servos, and embedded hardware, 

great care was taken into the choice of power supply for this project.  Initially, the vehicle was 

designed to run off of a 9 VDC batteries as the power supply.  This power supply has been 

chosen because it is powerful enough to supply enough power to operate all of the onboard 

electronics as well as power the motors and motor drives.  To calculate the maximum power 

required by the onboard electronics, the maximum current draws for each component were found 

by looking at the datasheets associated with the respective components.  The power requirements 

for each component, as well as the overall amp draw and power draw for the onboard 

components are compiled in Table 7.  Using a typical 9VDC alkaline battery, the minimum 

runtime of the vehicle from the battery can be determined from assuming the maximum amp 

draw is constantly used by the vehicle.  With the average 9V alkaline battery being 600 mA·hrs, 

the vehicle would have a minimum runtime of 2.92 hours.  This is also shown in Table 8. 
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Table 7: Power Calculations Table 

 

 
Table 8: Vehicle Runtime Calculation Table for 9VDC Alkaline Battery 

 However, the one factor that is not included in these measurements is the current being 

drawn by the motor.  This current draw varies not only with the velocity and acceleration 

required of the motor, but the current draw also increases as the input reference voltage for the 

motor shield rectifier varies.  As the alkaline battery was used more over a period of time, the 

voltage provided by the battery would decrease due to the motor load.  As less of a voltage was 

sourced, more current was required by the motor to move the vehicle.  With this being factored 

in, the alkaline battery was only getting about 30 minutes of use out of each battery before there 

was not enough power available by the battery to drive the motor.  With less power available to 

the motor, the vehicle was moving much slower than normal, and was unable to travel the 

desired lengths and angles that were desired.  By having a more constant, regulated voltage as 

the motor shield reference, the motor would have a much more consistent voltage to reference 

for the motor output, meaning more consistent, repeatable results. 

 

 To solve this, one 12 VDC Nickle-Metal Hydride rechargeable battery and one 7.5 VDC 

Nickle-Metal Hydride battery were used in place of the 9 VDC alkaline batteries.  The 7.5 VDC 

battery was connected only to the Arduino Mega microcontroller.  By having this component on 

a separate power source, there is less noise that is seen in the other embedded components and 

the microcontroller can operate independently of these components.  The 12 VDC NiMH battery 

is used as the source for the onboard embedded components, namely the ultrasonic range 

detectors, Bluetooth device, IMU device, and GPS device and motor shield.  The NiMH has 

2000 mAH of stored power amounts to 16 hours of use, which compared to the alkaline battery, 

proves that it is the better choice.  These calculations are found in Table 9. 

 

 

  
Table 9: Vehicle Runtime Calculation Table for 12 VDC NiMH Battery 

 



46 

 

 All these components operate off a 5 VDC input.  To step the 12 VDC down to 5 VDC, a 

voltage regulating circuit will be introduced.  This regulation will be accomplished by 

introducing the voltage regulation circuit shown in Figure 36.  This circuit utilizes the LM7805 

voltage regulator that regulates input voltage from a range of 5-18 VDC to a nominal output 

voltage of 5 VDC.  Two capacitors, one at the input (10 µF) and one at the output (1 µF), will be 

added in parallel to clean up any variance or ripple in the signal. 

 
Figure 36: 12 VDC to 5 VDC Voltage Regulator Circuit 

 

 The 5 VDC output from this circuit acts as the input source for the IMU, GPS, and 

Bluetooth devices as shown below in Figure 37.  Figure 37 also shows the input and output wires 

from each device that will be connected back to the microcontroller.  The circuit connected in 

Figure 34 was constructed on a solder board and was mounted onto the vehicle. 

 

Figure 37: Solder Board #1 Circuit Design 
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 As shown above in Figure 37, each device used only requires certain inputs and outputs 

to accomplish the tasks that are required for this application.  The IMU uses only the SCL (serial 

clock) and SDA (serial data) pins to communicate accelerometer, gyroscope, and compass data 

back to the Arduino controller.  The serial data is transmitted every time the serial clock pin is 

pulsed, which is a parameter that can be set by the user.  The GPS device communicates the 

relative position of the vehicle through the Rx and Tx pins.  Transmissions (Tx) from the GPS 

are received by the microcontroller (Rx).  The opposite is true for transmissions from the 

microcontroller to the GPS.  The communication pins used on the microcontroller for the GPS 

data transfer are Digital I/O pins 18 and 19, respectively.  The same communication scheme of 

transmitting and receiving data is true for the Bluetooth device.  This communication path is 

chosen between Digital I/O pins 0 and 1.  Also, a reset function is required by the Bluetooth for 

testing purposes.  This Reset pin is connected through a 1 µF shunt capacitor to the Reset pin 

found on the motor shield. 

 

 Below in Figure 38 a picture of the completed RC vehicle is shown.  The electronics 

were mounted on a board made from fiberglass.  Fiberglass is a non-conductive material, so it 

serves as a good medium with which to mount the devices.  Brackets were also made to mount 

the ultrasonic range detectors onto the front of the car.  The use for these devices will be 

explained later in the report.  The vehicle, as designed, meets both the size and weight 

requirements that were outlined in the engineering requirements for the project. 

 

 

 

 

Figure 38: Photographs of vehicle used in project application (top and side view) 
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 The microcontroller is controlled by embedded C code compiled in the open-source 

environment. This code will be programmed to gather sensor data, control the motors, and 

communicate with the terminal. A portion of the code will be functionality referenced from 

open-source libraries while the rest will be developed as a custom solution for this project. Many 

of the libraries were from Adafruit repositories. Ada fruit manufactured many of the components 

used for the project, and their libraries were used for simple interfacing between devices. The 

custom solution will function out of a header file that encapsulates all functions needed for the 

vehicle to operate. 

 Arduino code is broken into two, fundamental sections. Before these sections are entered, 

all functions to be used are defined in a header file. The specialized header file has functionality 

for course correction, obstacle detection, and code decoding among others. A sample of pseudo-

code for the header file is shown below in Figure 39. 

 

Figure 39: Pseudo-code header file of the embedded code 
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The first, fundamental section of Arduino code is setup(). Before setup() is entered, all 

global variables used in the code are defined. Once these declarations are complete, control 

moves to the setup() block. In setup(), previously defined declarations are initialized. As shown 

in the pseudo-code below, the Arduino is commanded to enable serial data transmission. Also, a 

local Bluetooth connection is set up using a third-party module so that the vehicle and 

application terminal can communicate. Following Bluetooth initialization, the ultrasonic sensors 

are configured to the proper pins. Lastly, the motor shield is initialized. The motor shield 

communicates with the microcontroller using I2C in a serial format. Below, a simplified 

flowchart shows the general process of the setup() block in Figure 40. Then, in Figure 41 and 

Figure 42, pseudo-code for everything up to and including the setup() block is shown. 
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Figure 40: Flowchart of Arduino code setup 



 

Figure 41: Variable Declarat
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Variable Declaration Pseudo-code for the Arduino 

 

 



 

Figure 

After the setup() block is completed, control moves to the 

loop() block of Arduino code is where all action takes place. As can be surmised by the name, 

the loop() block is an infinite loop. When compiled and uploaded to the microcontroller, the code 

will run indefinitely unless a pre-

For this action, several actions take place every time the loop is completed. First, data is read 

from the Bluetooth serial stream. This data will include the newly requested command that will 

be run during the current loop cycle

car following its instructions. This prevents damage to the vehicle’s mechanical componenets. 

Second, the next command to be followed will be run prior to execution. The command will be 

dissected to recover pertinent information for the microcontroller's servo and motors. This 

information includes, angle, time, and voltage. Before executing the next command, the third 

step in the loop() block will check the proximity readings of the ultrasonic sens

is near, the motors will be sent an evasive maneuver command. An algorithm will then be 

completed to find the best route to return to the correct path while avoiding the obstacle. If no 

obstacle is detected, the fourth step is to run th

completed, the IMU data stream will be check to determine the vehicle's location. The inertial 

measurement unit's sensor data will first be filtered to remove excess noise from the signal. Once 

the acceleration and angular velocity values are ready, the information will be sent to the 
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Figure 42: Setup() block of the Arduino code 

 

block is completed, control moves to the loop() block of the code. The 

block of Arduino code is where all action takes place. As can be surmised by the name, 

block is an infinite loop. When compiled and uploaded to the microcontroller, the code 

-programmed stimulus causes the code to break out of the loop. 

For this action, several actions take place every time the loop is completed. First, data is read 

from the Bluetooth serial stream. This data will include the newly requested command that will 

be run during the current loop cycle. This command will then be checked for errors prior to the 

car following its instructions. This prevents damage to the vehicle’s mechanical componenets. 

Second, the next command to be followed will be run prior to execution. The command will be 

to recover pertinent information for the microcontroller's servo and motors. This 

information includes, angle, time, and voltage. Before executing the next command, the third 

block will check the proximity readings of the ultrasonic sensors. If an obstacle 

is near, the motors will be sent an evasive maneuver command. An algorithm will then be 

completed to find the best route to return to the correct path while avoiding the obstacle. If no 

obstacle is detected, the fourth step is to run the command. While the movement is being 

completed, the IMU data stream will be check to determine the vehicle's location. The inertial 

measurement unit's sensor data will first be filtered to remove excess noise from the signal. Once 

gular velocity values are ready, the information will be sent to the 

block of the code. The 

block of Arduino code is where all action takes place. As can be surmised by the name, 

block is an infinite loop. When compiled and uploaded to the microcontroller, the code 

to break out of the loop. 

For this action, several actions take place every time the loop is completed. First, data is read 

from the Bluetooth serial stream. This data will include the newly requested command that will 

. This command will then be checked for errors prior to the 

car following its instructions. This prevents damage to the vehicle’s mechanical componenets. 

Second, the next command to be followed will be run prior to execution. The command will be 

to recover pertinent information for the microcontroller's servo and motors. This 

information includes, angle, time, and voltage. Before executing the next command, the third 

ors. If an obstacle 

is near, the motors will be sent an evasive maneuver command. An algorithm will then be 

completed to find the best route to return to the correct path while avoiding the obstacle. If no 

e command. While the movement is being 

completed, the IMU data stream will be check to determine the vehicle's location. The inertial 

measurement unit's sensor data will first be filtered to remove excess noise from the signal. Once 

gular velocity values are ready, the information will be sent to the 
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terminal for course correction. The information received by the application terminal from the 

inertial measurement unit is then used to determine the accuracy of the vehicle's position relative 

to the desired location. If a discrepancy is detected, the final action of the loop() block is to 

calculate a corrective path that will return the vehicle to the proper path. In the figures below, a 

flowchart outlines the actions taken in the loop() block, and pseudo-code outlines the potential 

code that will be developed. 
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Figure 43: Flowchart of the loop 

 



 

Figure 
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Figure 44: Local loop() variables 



 

Figure 
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Figure 45: Embedded loop() code 
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Collision Detection / Avoidance BR, TV, AA 

 

 The collision detection and avoidance component is unique in that half of it takes place in 

the RC vehicle’s hardware while the other half takes place in the application’s software. The 

detection half requires that a proximity sensor on the vehicle is able to detect any objects 

obstructing its path. Meanwhile, the collision avoidance half of this component must use an 

algorithm to avoid that obstruction. 

 

 The proximity sensor must have a long enough range to allow the vehicle to both 

acknowledge the obstruction, send a collision PDU to the application, and receive a response 

generated by the collision avoidance algorithm. In order to properly sense any obstructions, the 

sensor must be mounted as far in the front of the car as possible. It may also need some 

proximity sensors on each side to help the algorithm determine which way to go to avoid the 

obstruction. 

 

 The collision algorithm must take in the information provided by these proximity sensors, 

as well as the vehicle’s current and target locations in order to help the vehicle avoid the 

obstruction and get back onto the desired path. This means that it will have to create new 

instructions for the vehicle to follow and send them through data transmission. It is also possible 

that the obstruction is in the way of one or more of the vehicle’s target locations. If this is the 

case, the algorithm must recognize this and skip these locations, preferring to move forward 

instead. Figure 46 contains this component’s block diagram, and Table 10 contains its 

corresponding Functional Requirement Table. 

 

 
Figure 46: Level 2 Collision Detection / Avoidance Block Diagram 
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Module Collision Detection/Avoidance  

Inputs - Collision Signal 

Outputs - Command Signal 

- Object Detected 

Functionality Once the proximity sensor on the car senses a nearby object, an object 

detection signal is sent from the car to the PC software.  The incoming 

collision signal is then processed by the collision avoidance algorithm, 

which determines the path correction for the vehicle to avoid the 

object.  The corrected path is then sent as the command signal from the 

software back to the micro-controller on the car. 

 
Table 10: Collision Detection / Avoidance Functional Requirement Table 

 
 Another component of the microcontroller feedback to the system is the error tracking of 

the position of the vehicle.  In order to verify that the vehicle has traveled along the desired path, 

real-time data needs to be fed back to the microcontroller in order to determine its actual position 

compared to its desired position.  To do this, an onboard inertial measurement unit (IMU) is 

going to be used.  This IMU has 6 degrees of freedom, meaning that the accelerometer 

component of the IMU has 3 degrees of freedom and the gyroscope component has 3 degrees of 

freedom.  Using these components, the IMU will be able to sense what direction the vehicle is 

turning, and how fast the vehicle is turning.  With this data fed back to the microcontroller, the 

position of the vehicle can be tracked through incorporating a complementary filter.  A 

complementary filter, in its most basic sense, utilizes a combination of a high pass filter, a low 

pass filter, and numeric integration to determine more accurate angle and angular velocity 

measurements than can be found through direct measurements from the IMU.  The sensor data 

collected by the IMU has a tendency to be noisy and can vary greatly from what the actual value 

is.  The complementary filter eliminates this noise and will give a more accurate description of 

the actual position of the vehicle by focusing on calculating a better angle measurement for the 

direction of the path of the vehicle.  The complementary filter uses the following equation to 

accomplish this: 


 � 0.98	'"()� * (+,-.'/' � 0/� * 0.02	'11.'/'� 

 The angle for the current time interval, θ, is not simply taken from the gyroscope data, 

rather it is the integration of the gyroscope data added to the angle of the previous time step.  

This is then added with the accelerometer data, which is used as an angle measurement using the 

arctangent function.  These two quantities are multiplied by scalar constants, whose sum equals 

one.  The past angle and gyroscope integrated sum is weighted much more than the 

accelerometer angle, as seen in the equation above.  This weighting ensures that the 

measurement values will not drift in the long term, and the measurements will be very accurate 

in the short term.   

 This type of filter utilizes 3 main mathematical functions in order to filter out the 

unwanted noise: integration, a low-pass filter, and a high-pass filter.  The integration that is used 

takes a summation of the angular rotation of the vehicle over one time interval through 
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integrating the angular velocity measurement from the accelerometer with respect to time.  This 

gives the change in angular position since the last sampling instance.  This is then added to the 

angular position of the last sampling instance, which results in an approximation of the angular 

position of the vehicle for the current sampling instance. This results in having incorporated the 

equivalent of a low-pass filter to the data.  It is filtering out short-term fluctuations in the 

vehicle’s angular position, and only allowing long term changes to be experienced.  Any change 

in position is going to be incremental instead of instantaneous.  The small scalar constant 

multiplied with the accelerometer angle also acts as a low-pass filter by only allowing that 

quantity to have a small impact on the current angle.  The larger scalar constant multiplied with 

the gyroscope integration and previous angle acts as a high-pass filter.  Acting in the opposite 

manner of the low-pass scalar constant, it allows for those quantities to have a larger impact on 

the current angle than the accelerometer angle and prevents the measurements of the vehicle’s 

path to drift over time.  The high-pass filter and the low-pass filter operate on the same time 

scaling, so they are being sampled at the exact same frequency.   

 Through comparing the desired vehicle position with the position measured by the 

complementary filter, the positional error of the vehicle can quickly be calculated.  The error will 

be used to adjust the next movement command to bring the vehicle back to the desired position. 

 For the purpose of collision detection, three ultrasonic range detectors were attached to 

the front of the vehicle.  By having one face straight ahead, one at a 45 degree angle to the right, 

and one at a 45 degree angle to the left, a full view of any object that may encounter the vehicle 

can be seen.  Through chaining these sensors together and using analog voltage feedback, the 

vehicle is able to measure the distance an object is from the front of the vehicle, ranging between 

3 and 72 inches from the front of the car.  The circuit for the interconnection of the ultrasonic 

sensors can be found below as Figure 47. 

 

 

Figure 47: Proximity Sensor Circuit Diagram 

 

 



60 

 

Parts List AH 

 

Figure 48: Parts List 
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Design Team Information BR, TV, AH, AA 

 

Alex Aubihl   -   Electrical Engineer   -   Hardware Manager 

 

Andrew Hopwood   -   Computer Engineer   -   Project Leader 

 

Benjamin Riggs   -   Computer Engineer   -   Software Manager 

 

Tyler Vance   -   Computer Engineer   -   Archivist 
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Conclusion AH 

 
The focus of the free-range pre-programmed car is to develop a system that can realize a 

user input in the form of motion. In order to accomplish this, the project will be broken into 

several components. First, input will be gathered and processed as a user inputs the desired track.  

Once the track has been processed, the information will be sent across a wireless connection to 

the radio-controlled vehicle. The vehicle will then execute the desired track. If an obstacle is 

detected, an interrupt will be sent through the vehicle's microcontroller to the computer for a new 

route to be determined. 

 After over a year of planning, designing, implementing, and testing our vehicle 

application, the project can be considered a success.  The vehicle is able to use parsed data 

commands created by a user through the PC interface and autonomously manuever the vehicle 

about the desired track path.  The vehicle is also able to measure the current position of the 

vehicle and compare that to the desired position from the algorithm.  This difference is calculated 

as the positional error, and the vehicle corrects for this error in the next track piece sent by the 

user.  The vehicle is able to incoroporate sensors on the front of the vehicle and avoid running 

into potential obstacles by braking the motors within a range of potential contact.  All things 

being considered, this project was a success. 
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Appendices BR, TV, AH, AA 

 

Referenced Datasheets: 

WiFi Module:  http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Wireless/WiFi/WiFly-RN-XV-

DS.pdf 

Bluetooth Module:  http://m2.img.dxcdn.com/CDDriver/sku.121326.pdf 

Microcontroller:  http://arduino.cc/en/Main/ArduinoBoardMega2560 

Ultrasonic Range Detector:   http://users.ece.utexas.edu/~valvano/Datasheets/HCSR04b.pdf 

Infrared Range Detector:  

http://www.acroname.com/products/Sharp_GP2D120_DATA_SHEET.pdf 

Motor Controller:  http://arduino.cc/en/Main/ArduinoMotorShieldR3 

Motor:  

http://www.robotgear.com.au/Cache/Files/Files/136_Mabuchi%20motor%20fa_130ra%20datash

eet.pdf 

GPS:  http://cdn.sparkfun.com/datasheets/GPS/EM506_um.pdf 

Servo:  http://www.servocity.com/html/hs-5055mg_servo.html#.VDyKQ_nF_HU 
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Matlab Simulation Code: 

% position of the car [x,y] 

% velocity of the car [v_x,v_y] 

 

% Target points obtained based on the predetermined path 

[x_p,y_p]=Path_d(1,10,10); 

 

T=100; 

index = 1; 

x=zeros(1,100); 

y=zeros(1,100); 

v_x=zeros(1,100); 

v_y=zeros(1,100); 

max_turn = (pi/6); 

 

x(1)=0; 

y(1)=0; 

v_x(1)=1/sqrt(2); 

v_y(1)=1/sqrt(2); 

 

for t=1:T-1 

    if t==1 

        index = index + 1; 

    else 

        if ( x(t-1) < x_p(index) && x(t) >= x_p(index)) || ... 

           ( x(t-1) > x_p(index) && x(t) <= x_p(index)) || ... 

           ( y(t-1) < y_p(index) && y(t) >= y_p(index)) || ... 

           ( y(t-1) > y_p(index) && y(t) <= y_p(index)) 

            index = index + 1; 

        end 

    end 

 

    if index > length(x_p) 

        break; 

    end 

 

    x_t = x_p(index); 

    y_t = y_p(index); 

 

    %destination velocity 

    [vx_t,vy_t]=ajdust_v(x_t,y_t,x(t),y(t),v_x(t),v_y(t),max_turn); 

    x(t+1)=x(t)+vx_t; 

    y(t+1)=y(t)+vy_t; 

    v_x(t+1)=vx_t; 

    v_y(t+1)=vy_t; 

end 

 

x_final=zeros(1,t); 
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y_final=zeros(1,t); 

for i=1:t 

    x_final(i) = x(i); 

    y_final(i) = y(i); 

 

end 

plot(x_final,y_final,'-k') 

 

hold on 

plot(x_p,y_p,'-r')  

function[vx_t,vy_t]=ajdust_v(x_t,y_t,x,y,v_x,v_y,angle) 

 

dx=x_t-x; 

dy=y_t-y; 

r=sqrt(dx^2+dy^2)/sqrt(v_x^2+v_y^2); 

vx_t=dx/r; 

vy_t=dy/r; 

end 

 

%predefined path 

function[x_p,y_p]=Path_d(S,K,E) 

% S is the predetermined shape of the path 

% K is the steps we would like to focus on 

% E is the horizontal length we predefine 

 

%x_p = 0:(E/K):E; 

%if S==1 

%    y_p=sqrt(25-(x_p-5).^2); 

%end 

 

x_p = zeros(1,6); 

y_p = zeros(1,6); 

 

x_p(1) = 0; 

y_p(1) = 0; 

 

x_p(2) = 1; 

y_p(2) = 3; 

 

x_p(3) = -5; 

y_p(3) = 5; 

 

x_p(4) = -5; 

y_p(4) = 8; 

 

x_p(5) = -3; 

y_p(5) = -2; 

 

x_p(6) = 4; 

y_p(6) = -7; 

 

end  
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function[x_t,y_t,index]=Target_d(x_p,y_p,x,y,t,index) 

 

 

if t==1 

    index = index + 1; 

    x_t = x_p(index); 

    y_t = y_p(index); 

else 

    if (x(t-1)<x_p(index) && x(t) >= x_p(index)) ||... 

            (x(t-1)>x_p(index) && x(t) <= x_p(index)) ||... 

            (y(t-1)<y_p(index) && y(t) >= y_p(index)) ||... 

            (y(t-1)>y_p(index) && y(t) <= y_p(index)) 

    index = index + 1; 

    end 

x_t = x_p(index); 

y_t = y_p(index); 

x_p(index) 

end 

Appendix Figure 1: Matlab Simulation Code 
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