
The University of Akron
IdeaExchange@UAkron

Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2015

Free-Range Pre-Programmed RC Car
Alexander L. Aubihl
University of Akron Main Campus, ala54@zips.uakron.edu

Andrew S. Hopwood
University of Akron Main Campus, ash40@zips.uakron.edu

Benjamin J. Riggs
University of Akron Main Campus, bjr40@zips.uakron.edu

Tyler P. Vance
University of Akron Main Campus, tpv3@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects

Part of the Electrical and Electronics Commons, Systems and Communications Commons, and
the VLSI and Circuits, Embedded and Hardware Systems Commons

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

Recommended Citation
Aubihl, Alexander L.; Hopwood, Andrew S.; Riggs, Benjamin J.; and Vance, Tyler P., "Free-Range Pre-Programmed
RC Car" (2015). Honors Research Projects. 153.
http://ideaexchange.uakron.edu/honors_research_projects/153

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/153
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/153?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

1

Senior Design Project Proposal

Free-range Pre-programmed RC Car

Alex Aubihl EE

Andrew Hopwood CpE

Ben Riggs CpE

Tyler Vance CpE

2

Table of Contents
Title Page .. 1

Table of Contents ... 2

Abstract .. 3

Problem Statement .. 4

Need Statement .. 4

Objective Statement ... 4

Research Survey .. 5

Marketing Requirements .. 7

Objective Tree ... 8

Design Requirements Specification ... 9

Engineering Requirements .. 9

Requirement Matrix .. 11

Accepted Technical Design ... 12

Overview ... 12

Qt Basics .. 14

Graphic User Interface .. 15

Track Parser ... 28

Data Transmission ... 33

RC Vehicle ... 38

Collision Detection/Avoidance .. 57

Parts List ... 60

Design Team Information .. 61

Conclusion .. 62

References .. 63

Appendices ... 64

3

Abstract BR, TV, AH, AA

 There is a growing interest in the capabilities and utilization of autonomous vehicles.

The objective of this project is to design a small scale illustration of an autonomous vehicle

driven by user input. An application will be designed that will allow a user to create a track that

an RC car will accurately follow. As the car follows the track, a microcontroller on the vehicle

will send movement information back to the application. This information is used by the

application to process where the vehicle is currently at and where it needs to go. While in

motion, on-board sensors will actively detect obstacles in the path and adjust the vehicle’s

direction to avoid collision.

4

Problem Statement BR, TV, AH, AA

Need BR, TV, AH, AA

 The free-range pre-programmed RC car has many possibilities, ranging from

entertainment to a small-scale representation of autonomous vehicles. The technology could be

employed in various environments depending on the customer's need. An example would be an

autonomous vehicle on a factory floor with scheduled tasks throughout the building. The track

would be determined by user input from the PC application’s user interface. The input would

then be converted into a readable form that directs the motion of an RC car. The vehicle would

be able to detect obstacles to avoid collisions and also correct its course if necessary. After

receiving the initial command, the vehicle would successfully complete its movement and then

wait for a new order.

Objective BR, TV, AH, AA

The objective of the project is to have a remote controlled vehicle be able to

autonomously maneuver along a desired path set by the user. An application will be created on a

personal computer that allows the user to view the different performance characteristics of the

vehicle and to design the path of the vehicle. The program will allow the user to select between

several premade track pieces and connect them into the shape of the desired path. The user will

be able to select track pieces that will then be appended one by one to the current location in the

track. These tracks can also be saved and reloaded at will by the user. After executing the track,

the information of the user-designed path will be wirelessly transmitted to the vehicle. The RC

car will then follow this track at a given velocity while avoiding any potential collisions.

5

Research Survey BR, TV, AH, AA

One option for the application is building it using C++, Qt libraries, and Windows APIs.

Qt has libraries that assist the development of both Wi-Fi and Bluetooth communication. The

application will instantiate communication to the vehicle and continue doing so until the

application is powered down. Algorithms will be constructed inside the code to calculate the data

that needs to be sent to the vehicle to control the motor and sensors. Error handling will also

have to be implemented to keep the vehicle on the determined path. If the vehicle strays off

course, the error handling will guide the vehicle back onto the proper path. In addition to error

handling, the car will also have to avoid colliding with obstacles in the path.

Using Bluetooth as a means of communication between the application and the vehicle

provides both advantages and disadvantages. The main advantage of using Bluetooth is the cost

and power efficiency of operation. When compared to Wi-Fi communication, the amount of

power consumption for Bluetooth is significantly less. According to a comparative study

performed by Oriana Riva from ETH Zürich and Jaakko Kangasharju from Helsinki University

of Technology, the consumption of power in several Nokia cell phones was more than 100 times

greater when using Wi-Fi as compared to using Bluetooth [4]. The reason for this significant

difference in power consumption is directly related to the vast difference in data transfer rate.

The theoretical data transfer rate for Bluetooth is nearly 11 times slower than Wi-Fi data transfer

[4]. However, if the group wanted to incorporate video communication or derive complex sensor

data, Wi-Fi communication would be better suited for higher data transfer rates. According to

IEEE standard 802.15.1-2005, the effective range for Bluetooth communication is between 1

meter and 100 meters, depending on the class of Bluetooth device used [1]. The application will

limit the maximum range the vehicle can be away from the user, thus helping to eliminate

problems the vehicle will have with losing communication. If communication with the vehicle is

lost, a mechanism will be hardwired into the vehicle to shut the motors off.

One of the main limitations of the design of the project is that the user can only choose

between premade track pieces, which limit the user’s ability to control the vehicle to go wherever

the user pleases. The vehicle will only be capable of following the distances and curve angles of

the premade track pieces, and not be able to make sharp or gradual turns. Despite this limitation,

there should ideally be a wide enough selection of track pieces for the user to design whatever

track he or she desires. While this is a limitation, it was a strategic decision by the designers to

develop the interface as such. The program will be able to better track the position of the vehicle

by only allowing it to travel at certain speeds and turn at certain angles. Without this limitation,

the program would have to handle and compensate for the error of invalid maneuvers. The

predetermined pieces have already been tested and are known to not cause error with the vehicle.

A limitation of the current technology is that similar programs for remote control vehicles

are made almost exclusively for Apple and Android products. By being designed on these

operating systems, this product can only be operated on either Apple or Android devices,

meaning they can only be run using smart phones and tablets. With the designers choosing to use

a Windows application, the program for the vehicle could be used on a desktop computer with

Windows. By using Windows as the operating system, the vehicle and program will have more

of a marketable value, considering that most companies use Windows in their offices.

 Design teams at the University of California have developed robotic vehicles that follow

the same general concept that will be used in making this project. By using off-the-shelf

components, the UC design teams have been able to create several different autonomous vehicles

incorporating Android operating systems, Arduino electronic boards, and R/C vehicles [3].

6

Through utilizing off-the-shelf components, they were able to cost-effectively create an

autonomous system where sensors and other electronic components could be added without

needing extra fabrication. To communicate between the Android operating system and the

vehicle, a Bluetooth connection was established to transmit/receive data. A C++ application was

written to allow communication between the Android operating system and a desktop computer

over Wi-Fi. Through UDP packets, information such as video transmission, sensor signals, and

GPS locations can be transmitted between the Android operating system and desktop application

[3].

One patented technology that is very similar to our idea is a remote controlled toy device

that uses a single chip main control unit. Its developer, Zhang Fengchuan of China, created a

processor chip that collects video data and transmits a compressed signal over a Wi-Fi

communication channel. By adding this chip onto a remote controlled toy, the user can control

the toy using a smart phone, tablet, or personal computer. The chip receives the input controls

from the user, relays the information to the motors, LED lights, and related electrical control

components, and transmits measured data back to the user interface [2]. The design team would

like to implement a system similar to this processor chip in our vehicle. Being able to wirelessly

translate commands from an application-based system to the hardware of the vehicle is the

ultimate goal of this project. Rather than designing a processing chip to do this, the group would

prefer to use off-the-shelf components to implement the same process.

 Another patent that relates to our project idea is a wireless system that was developed to

control an R/C car via a handheld game player device. Inventor Patrick Tze Man Ho was able to

achieve this by combining a game cartridge and a message transmitter. The user will be allowed

to control the R/C car with the handheld gaming device, and have the display screen of the

gaming device show functionalities to and for the remote control unit. The transmitter would

send a radio frequency to a receiver on the vehicle. Using the gaming device, the user would be

able to control the speed and direction of the R/C car [6]. This process of wireless

communication is the ultimate goal of the group, but the means of making the communication

between the vehicle and the user interface will be slightly different. Rather than using radio

frequency, the group will be using Bluetooth or Wi-Fi communication.

7

Marketing Requirements BR, TV, AH, AA

• The RC car should follow the designed track accurately

• The program should be able to run on Windows PCs

• The RC car should have a reasonable battery length

• The RC car should avoid collisions

• If off-track, the RC car should auto-correct

• The program’s GUI should be simple to use

• The application should take up as little memory/resources as possible

• The system should be affordable

• The parts should be interchangeable

• The system should be lightweight and portable

8

Objective Tree BR, TV, AH, AA

Figure 1: Objective Tree

9

Design Requirements Specification

Engineering Requirements BR, TV, AA

In order to allow for the marketing requirements to be realized, there needs to be a set of

engineering requirements that need to be created that will allow for the vehicle and its system to

fulfill the requirements desired by the customer. By analyzing the requirements requested by the

customers, the group must determine how the best method of satisfying these requirements can

be achieved. Without detailing how the goals will be achieved, the group must unambiguously

state what goals and requirements the vehicle, the communication, and the PC must reach. These

engineering requirements need to be made not only to give a verifiable, traceable specification

for the vehicle to achieve, but also to set limitations on the maximum performance of the vehicle.

Below, the group will explain the engineering requirements they have determined for the Free-

Range Pre-Programmed RC Car system, and show how they relate back to and achieve the

marketing requirements. The engineering requirements and marketing requirements are also

compared in a tradeoff matrix, which demonstrates how increasing or decreasing one parameter

affects the other. The requirements table and tradeoff matrix are found as Figures 2 and 3,

respectively.

10

Figure 2: Engineering Requirements Table

11

Requirement Matrix

Figure 3: Engineering/Marketing Requirement Tradeoff Matrix

Accepted Technical Design

Overview BR, TV, AH, AA

 The general idea of the program is to take the user’s desired track and replicate it through

the RC car. In order to accomplish this, a combination of hardware and software will be needed.

Figure 4 is a level 0 block diagram of the system, which illustrat

system. The functional requirement table for this block diagram is contained in Table 1.

Figure 4: Level 0 Block Diagram

Module RC System

Inputs - User Track Input

- Car Position

Outputs - Direction

- Speed

- Distance

Functionality User inputs a track design into the RC system that can compute and

relay distance, speed, and direction to the RC car. The car position is

relayed back to the RC system.

Table 1: Level 0 Functional Requirement Table

 In order to ease the design process, the RC system was broken down into functional

components. These components were divided and grouped according to functionality and each

component has its own inputs and outputs. These components and their connections are

represented in Figure 5. Each component’s functionality is broken down in Table 2.

12

Accepted Technical Design

The general idea of the program is to take the user’s desired track and replicate it through

the RC car. In order to accomplish this, a combination of hardware and software will be needed.

Figure 4 is a level 0 block diagram of the system, which illustrates the simplest view of the

system. The functional requirement table for this block diagram is contained in Table 1.

Figure 4: Level 0 Block Diagram

RC System

User Track Input

Car Position

Direction

Distance

User inputs a track design into the RC system that can compute and

relay distance, speed, and direction to the RC car. The car position is

relayed back to the RC system.

Table 1: Level 0 Functional Requirement Table

design process, the RC system was broken down into functional

components. These components were divided and grouped according to functionality and each

component has its own inputs and outputs. These components and their connections are

ure 5. Each component’s functionality is broken down in Table 2.

The general idea of the program is to take the user’s desired track and replicate it through

the RC car. In order to accomplish this, a combination of hardware and software will be needed.

es the simplest view of the

system. The functional requirement table for this block diagram is contained in Table 1.

User inputs a track design into the RC system that can compute and

relay distance, speed, and direction to the RC car. The car position is

design process, the RC system was broken down into functional

components. These components were divided and grouped according to functionality and each

component has its own inputs and outputs. These components and their connections are

ure 5. Each component’s functionality is broken down in Table 2.

13

Figure 5: Level 1 Block Diagram

Module Level 1 RC System Functionality

Inputs - User

- Sensor Input

Outputs - Direction

- Speed

- Distance

Functionality After the user selects a desired path for the vehicle to follow, the track

file is sent through a parsing program, which breaks the track down

into individual movement instructions for the car. These instructions

are transmitted as a command signal to the car, which begins moving.

As the vehicle moves, its position is monitored by the onboard IMU,

which sends the vehicle’s position signal back to the program. If the

collision detection sensor is activated by the vehicle approaching an

unanticipated object, the sensor input is used to alert the vehicle that it

needs to adjust its path. Through the IMU and sensor feedback, the PC

program corrects the path of the vehicle. This corrected path is then

transmitted back to the vehicle, which adjusts its path according to the

new car instructions.

Table 2: Level 1 Functional Requirement Table

14

Qt Basics BR

 Qt is an open-source development tool that will be used in conjunction with C++ in order

to accomplish useful tasks that would otherwise be extremely complex or even impossible. There

are numerous libraries that Qt provides, each helping to ease the complexity of certain tasks. In

addition, Qt also provides numerous objects that can either be used to override basic C++ objects,

like a string or vector. Each of Qt’s classes has a name that begins with ‘Q’, such as ‘QString’ or

‘QMap’. This allows a programmer to easily differentiate whether a given object is from base

C++ libraries or from Qt libraries.

 Many of Qt’s functionalities are abstract, requiring pointers to base classes instead of

specific objects. This allows users to very easily inherit from base classes while still preserving

the functionality that Qt provides. Throughout the application, numerous objects will inherit

from some of the various Qt base classes, and many of the functions that will be used will be

defined by these base classes.

 Qt also provides an application to help with the creation of a dialog or widget. This

program, called QtDesigner, allows the user to simply drag and drop other widgets into the

dialog being created. The end result is a file with extension ‘ui’. This file will then be compiled

along with the other header and source files and turned into a header file of its own, detailing a

‘UI’ class that is equivalent to the dialog created in QtDesigner. This header file can be included

in the header file of whatever dialog it was made for, and this dialog’s class will store a ‘UI’

object in order to allow access to the various widgets created in QtDesigner.

 The most important use of Qt in this application will be the signals and slots system.

Signals and slots are new types of functions introduced by Qt which, when working together, act

like an interrupt written directly into the C++ code. One of the major uses of this system is the

allowance for a child class to directly talk to the parent class that holds it. When an object needs

to send a signal to any object that receives it, it calls the signals function using the emit keyword.

This will then emit the signal to anything that is listening. When an object listening for this

signal receives it, it will immediately call the slot attached to the signal, no matter what was

happening previously. Signals and slots can be connected to each other using the global connect()

function defined by Qt’s core libraries. In addition, in order for an object to use signals and/or

slots, the ‘Q_OBJECT’ macro must be defined in the class’s definition.

 Qt will be directly integrated into every aspect of the application, and will even appear

throughout the pseudo-code. Signals and slots will be primarily used in two areas: the user

interface, in order to connect specific buttons to specific functionalities, and for exchanges

between the communication and track parser components [7].

15

Graphic User Interface BR,TV

 The user interface is responsible for obtaining and translating user input in order to create

a usable track. Dialogs are to be created using Qt libraries which will process inputs and update

the display accordingly. The end goal of this component is to create a track file which will be

written in JSON format.

 The application’s main window should contain the usual menus in the top left. Below the

menus, there will be toolbars with various shortcuts for convenience. Qt’s main window class

will assist in the creation of these menus and toolbars. The main window will also have a track

view and track piece selector. Figure 6 shows the general design layout of the main window.

Figure 6: Main Window Design

 The track view seen in the middle of Figure 6 displays the track pieces as they are placed.

When a new document is created, a blank view is displayed. In order to add track parts, the user

will click on various pieces in the part selector on the bottom of Figure 6. When hovering over a

piece in the track selector, the track view should show a translucent view of what the piece

would look like if added. Tracks can be saved and loaded, defaulting to the user’s documents

folder. When a previously created track is loaded, the track view will display the track in its

entirety and automatically place the user at the end of the track.

 The part selector should also have the capability to allow the user to traverse back though

the track without deleting pieces by using the left and right arrows seen in Figure 6. The ability

to traverse though the track would allow the user to make changes to the middle of the track.

This traversal ability will be implemented in two ways. The arrows in the track selector will

16

navigate through the track one by one. The user should also have the ability to click on a track

piece, automatically selecting it. When adding a track piece, it will append it to whatever the

currently selected piece is. In addition, the track selector will also need a delete function that

would remove the currently selected track.

 The background of the track view will be a grid format in specific increments that will

allow the user to better visualize and lay out the track. In addition, this will also help to get a

better grasp of the distance the vehicle will travel. The track view will also need the ability to

zoom in and out, allowing the user to either view more of the track at once or to look at a specific

piece more closely. Additionally, by clicking and dragging on either end of a track piece, the

user should be able to extend or retract that piece, allowing for more customization.

 Lastly, this component will also need to be able to create a track file based on the track

currently in the track view. This file will be in JSON format with each track piece being its own

object and containing the track’s specifications. The application should also be able to read

JSON files and populate the track view based on what the file contains. Figure 7 shows a

simplistic example of what a track file may look like.

Figure 7: JSON Track File Example

17

 Figure 8 shows a level 2 block diagram for this component. Table 3 shows the

functionality requirements for this component.

Figure 8: Level 2 User Interface Block Diagram

Module User Interface

Inputs - User

Outputs - Track File

Functionality At the user interface, the user will be allowed to create a customized

track for the vehicle to follow. This track is created by the user

selecting between vast arrays of track pieces found in the part selector.

Once selected, the track pieces are placed in sequential order, creating

the complete track. This track will be shown in the track view window.

Pieces can be edited in the part editor window, where the user can

adjust the length of the piece, as well as the speed of the vehicle. Once

the user is satisfied with the track, the user can send the program to the

vehicle to execute. To do this, the vehicle track is saved as a file, and

the track file is sent to the track parser.

Table 3: User Interface Functional Requirement Table

18

 All of the functionality required to implement the user interface can be implemented

through three classes that inherit from various Qt classes. The classes and their interactions can

be seen in Figure 9.

Figure 9: User Interface Class Diagram

 At the bottom of the diagram is the TrackItem class. This class, which inherits from

QGraphicsItem, represents a single track piece in the UI. QGraphicsItems are any object that can

be placed in a QGraphicsScene, allowing for the visualization of movable objects to the user.

Typically, these items are not kept in any order, but in the case of this project, the track pieces

must be kept in a specific order; otherwise, the track pieces will be executed incorrectly. To

maintain the order of the track pieces, each track piece will hold a pointer to both the previous

track piece and the next track piece in the track. These pointers can be accessed through the prev()

and next() functions shown in Figure 9. If the previous and/or next track piece in the track does

not exist, signifying that the current track piece is either the beginning or end of the track, then

these functions will return NULL. Pseudo-code for the TrackItem class can be found in Figures

10 and 11.

Figure 10: TrackItem.h Pseudo

19

Figure 10: TrackItem.h Pseudo-code

Figure 11: Trac

20

Figure 11: TrackItem.cpp Pseudo-code

21

In order to hold all of these TrackItems, as well as allow for simple addition, removal,

and navigation of various track pieces, the TrackView class is necessary. This class inherits from

QGraphicsView and holds a QGraphicsScene as a member variable. By overriding

QGraphicsView, the graphics scene and view are much more customizable to the needs of our

project.

In addition, this custom class is also able to manage the selected track piece. By storing a

pointer to a TrackItem object, the TrackView has easy access to whatever track piece the user is

currently working with, as well as the previous and next track pieces. If any track piece in the

graphics scene is clicked on, it will send a signal to the TrackView. The TrackView will then

shift its currently selected piece to this newly selected piece. This allows the TrackItem object to

be blind to which track piece is currently selected, while TrackView does whatever track

management is necessary.

The last advantage to this TrackView class is the ability to write ease of access functions.

Instead of repeating the same code to add a track piece multiple times in the MainWindow, the

TrackView can instead have simple functions for the addition, removal, or selection of a track

piece. The more specialized each object is, the easier it is to navigate the code and find the cause

of a potential issue. The pseudo-code for the TrackView class can be found in Figures 12 and 13.

Figure 12: TrackView.h Pseudo-code

22

Figure 13: TrackView.cpp Pseudo-code

The MainWindow class, which inherits from the QMainWindow class, will not only act

as a controller between the user and the application, but will also act as a controller of the

application as a whole. All of the various buttons and widgets that encompass the dialog will be

placed into this class, and the signals and slots that allow them to interact will be connected

through the MainWindow as well. This dialog will be active at all times, assisting the user with

the creation and execution of a track file. In order to ease the creation of this class, QtDesigner

will be used. Pseudo-code for the MainWindow class can be found in Figures 14 and 15.

23

Figure 14: MainWindow.h Pseudo-code

24

Figure 15: MainWindow.cpp Pseudo-code

25

 The visualization of an individual track piece in the TrackView requires complex

trigonometric and geometric calculations. Each track piece must be two-dimensional instead of a

simple straight line, meaning that the track piece must have a width, which will cause both an

inner and outer track. In order to draw the curved lines that make up these inner and outer tracks,

numerous potential methods could be used. It was decided to make use of the arcTo() function

defined by the QGraphicsItem base class, which TrackItem inherits from.

 This arcTo() function requires information that is not immediately available without

specific calculations. Each track piece stores its own starting position in the TrackView grid, as

well as its turn angle, length, and its starting orientation angle. Figure 16 shows the required

metrics and the usage of the function.

Figure 16: QGraphicsItem::arcTo() Function

 The blue line shows what the resulting arc will look like with the given parameters. The

sweep angle is equivalent to the inverse of the turn angle, since right turns are seen as positive in

the case of a TrackItem. In addition, the start angle can be calculated based on the angle of

orientation. In the case of a TrackItem, an orientation of 0° represents the left edge of the circle

in Figure 16, or 180° in the arcTo() system.

 Beyond the sweep angle and starting angle, the square that encompasses the circle being

travelled must be given. In order to find this square, the top-left corner and the width of the

square must be found. As Figure 16 suggests, the width of the square will simply be twice the

radius of the circle being travelled, meaning that two parameters must be found: the top-left

corner of the square, and the radius of the circle.

 Figure 17 shows how to calculate the radius given the turn angle and length of the track

piece. As the figure suggests, the length of a track piece is based on the maximum distance it

travels above the y-axis, instead of the length of the arc itself.

 Finally, with the radius calculated, the top left

circle can be found.

Using Figure 18, equations can be formed to find the location of the top

26

Figure 17: Radius Calculation

Finally, with the radius calculated, the top left- corner of the square encompassing the

Figure 18: Top Left Calculation

Using Figure 18, equations can be formed to find the location of the top-left corner.

corner of the square encompassing the

left corner.

27

 Finally, with all of the pieces in place, the track pieces can be placed into a

QGraphicsScene. Simulations were run to ensure that all of the calculations came out correctly.

The result is a prototype of what the TrackView may look like, shown in Figure 19.

Figure 19: TrackView Simulation

 In the figure, the blue line represents the x-axis while the red line is the y-axis. The first

track piece placed is the straight line that starts where these two axes meet. This track piece goes

straight up the y-axis, while the inner and outer lines are a specific distance away from the

track’s line, creating a visible rectangle.

 Finally, when the track is saved by the user, each track piece is analyzed in order, and the

necessary data for each piece is stored into the saved JSON format file. This file can then be used

in two locations: reloading the file into the user interface in order to view or edit it, or executing

the track with the Track Parser.

28

Track Parser BR, TV, AH, AA

 The track parser’s main goal is to take the track file and turn it into instructions that the

microcontroller on the vehicle can interpret. This means that the component will need a method

to parse the file and to turn each track piece into a series of instructions that the microcontroller

on the vehicle can understand. These instructions are to be put into a vector and sent to the data

transmission component.

 In order to parse the track file, the component will need to be able to translate the JSON

data into individual track pieces. These track pieces will need to be stored in a vector so that

they remain in the order that they were given. Once the data transmission asks for the next track

piece, the corresponding track piece will be converted to instructions.

 The instructions that the converter creates will be specifically formatted and will contain

a series of values that will correspond to voltages that the microcontroller will have to apply to

different pins to run servos and motors, as well as the time that these voltages need to be applied.

Figure 20 shows the level 2 diagram block diagram for the track parser and Table 4 shows the

functional requirements for the component.

Figure 20: Level 2 Track Parser Block Diagram

Module Track Parser

Inputs - Track File

Outputs - Car Instructions

Functionality The track file created by the user on the interface is sent through a

parsing file, which breaks the track down into several smaller

commands. These commands are then encoded as binary messages and

are transmitted to the micro-controller as the car instructions.

Table 4: Track Parser Functional Requirement Table

29

To create the instructions, the converter will use the information given for each track

piece and run a series of equations. The known information about each track piece is the length,

angle, and turn direction. First, the converter will calculate the instructions for the drive train

motor. The radius of the turn angle can be found by using the following equation:

�� �
�

sin 	
�

In this equation, L is the length of the track piece, and
 is the angle of the track piece. Once the

radius is found, the circumference can be found. The circumference can be found using the

following equation:

� � 2�����

The wheel circumference is also needed and can be calculated using the equation:

�� � 2�����

In this equation, �� is the radius of the car wheel, which is a measurable quantity. Then, the arc

length of the turn can be calculated by using the equation:

� �

360
��

The wheel circumference is also needed and can be calculated using the equation:

�� � 2�����

After A and WC are calculated, the number of revolutions that the wheel will need to rotate to

achieve the correct arc length can be calculated using the equation:

����� �
�

��

The velocity that the vehicle is to travel will be predetermined in the software. The motor has to

be tested at different voltages so that a graph can be created that relates the voltage to the

revolutions per minute. To find the needed revolutions per minute needed, the following

equation can be used:

��� �
�

��

The desired revolutions per minute can then be related to the voltage to find the voltage value

that needs to be applied to the motor. To determine the amount of time this voltage needs to be

applied the following equations can be used:

30

� �
�����

��� �
1

60

The time value will be in seconds. Also the angle that the turning wheels need to be to make the

desired turn for the track piece needs to be converted to instructions. The turn direction will be

used to tell the servo whether to turn right or left. To calculate the angle of the wheels, the

turning radius needs to be calculated again. The length of the car will also need to be measured.

Once the radius and the length of the car are found, the angle of the wheels can be found using

the equation:

 � !"#�	
�

��

�

A graph will also need to be created that relates the servo movement to the angle of the turning

wheels. The calculated angle will then be converted into a voltage that will move the servo to the

correct position. After all of these instructions are created, they will be sent to the data

transmission component.

To simulate the creation of track pieces and the way that the car will move with this

information, a script was created in Matlab that allows for the creation of a track by connecting

various points in a graph. An algorithm was created that takes this path as well as a given

velocity, and turns it into the resulting path to be followed by the “RC car”. The Matlab script

and its various functions can be seen in Appendix Figure 1.

 The predetermined path is created using two arrays, which hold the x and y points of the

path. The traveling object will move from point to point in sequential order, simulating the RC

car following track pieces. In this simulation, the traveling object must move one instance of the

given velocity before it is given a new direction. After each of these movements, it will then

check to see if it passed the current target point. If it did, it will head toward the next target point.

Figure 21 displays the program simulating a half-circle with the traveling object moving

with a velocity of 1. It is important to note that it will sometimes pass a point entirely before

realizing this and heading for the next. Figure 22 shows the same track when the velocity is

reduced to ½. In this simulation, the traveling object moves along the path more accurately

because it has more time to realize that it has passed a target point.

Figure 21: Half Circle with Traveling Velocity of 1

Figure 22: Half Circle with Traveling Velocity of 0.5

Figure 23 showcases the ability of the Matlab simulation to head in any direction,

regardless of forward movement. Once again, when the velocity is lowered from 1 as it is in

Figure 23 to ½ as it is in Figure 24, the traveling object moved along the desired path more

accurately.

31

Figure 21: Half Circle with Traveling Velocity of 1

Figure 22: Half Circle with Traveling Velocity of 0.5

Figure 23 showcases the ability of the Matlab simulation to head in any direction,

regardless of forward movement. Once again, when the velocity is lowered from 1 as it is in

n Figure 24, the traveling object moved along the desired path more

Figure 23 showcases the ability of the Matlab simulation to head in any direction,

regardless of forward movement. Once again, when the velocity is lowered from 1 as it is in

n Figure 24, the traveling object moved along the desired path more

Figure 23: Jagged Path with Traveling Velocity of 1

Figure 24: Jagged Path with Traveling Velocity of 0.5

32

Figure 23: Jagged Path with Traveling Velocity of 1

Figure 24: Jagged Path with Traveling Velocity of 0.5

33

Data Transmission BR, AA, AH

 One of the key aspects of the entire system will be the ability to both transmit and receive

data between both the application and the vehicle’s microcontroller. This will be done using Qt

networking libraries that open a serial stream that allows free communication between terminals.

Several different commands will be encoded and sent. In order to both send and receive these

packets, a transceiver will be connected to the PC using the application. In addition, this

component must be able to decode any messages sent from the RC vehicle itself, and it must

react accordingly.

Bluetooth was chosen due to a variety of factors. Bluetooth operates on the 2400-2483.5

MHz band, which is a regulated band used in a variety of fields. Bluetooth transmits data in

packets of divided input data. A packet is sent on a clock-by-clock basis that allows for packet

acknowledgment. This technique allows for reliable connections in open-air environments. Ease

of use was another factor that led to Bluetooth being chosen. Bluetooth works with a master-

slave relationship. In the case of this project, the computer terminal will act as the master while

the vehicle will act as the slave. Finally, two technical parameters are important in Bluetooth

functionality. Bluetooth works with relatively low power requirements while providing fast data

transfer rates. There are three classes of Bluetooth. Class 2 was chosen for this project as it has

versatile transmission range of 10 meters and moderate power consumption..

The transceiver will also be receiving signals from the vehicle during this time. Some of

these signals will simply be update signals, or “UPD” signals, while some of them will be a

collision detection signal. The network code will have to be able to interpret what kind of

response signal was sent, and whether or not collision avoidance is needed. Figure 25 displays

the Level 2 Block Diagram for this component, and Table 5 shows the corresponding Functional

Requirement Table. Also, a diagram of communication flow is shown below in Figure 26.

34

Figure 25: Level 2 Communication Block Diagram

Module Communication

Inputs - Car Instructions

- Response Signal

Outputs - Collision Signal

- Command Signal

Functionality Once the PC algorithm determines the instructions for the car, the

signal is transmitted through the network code to the Bluetooth

transceiver. The signal received by the Bluetooth transceiver is the

vehicle command signal, which is relayed to the micro-controller. The

vehicle’s response signal, which is the IMU information and the

collision signal, is transmitted through the Bluetooth transceiver to the

network code. This signal is then broken down by the digital decoder,

which gives the feedback collision signal to the PC algorithm.

Table 5: Communication Functional Requirement Table

35

Figure 26: Data flow across communication system.

The vector of encoded track pieces created by the track parser must be sent to the

vehicle’s microcontroller one at a time. The vehicle will process each of these instructions for a

set amount of time—enough to ensure that track piece instructions won’t overlap. This,

combined with request commands from the vehicle, will ensure that the vehicle receives a single

instruction that is up-to-date with the current course correction parameters.

failsafe, the incoming commands will be stored locally on the vehicle. The application located on

the terminal is being written within the QT framework using C++. Below in Figures 27 and 28,

the header and source pseudo-code files are shown

communications code. Qt's built-

functionality.

Figure 27: Pseudo

36

The vector of encoded track pieces created by the track parser must be sent to the

vehicle’s microcontroller one at a time. The vehicle will process each of these instructions for a

enough to ensure that track piece instructions won’t overlap. This,

combined with request commands from the vehicle, will ensure that the vehicle receives a single

date with the current course correction parameters. To add another

failsafe, the incoming commands will be stored locally on the vehicle. The application located on

the terminal is being written within the QT framework using C++. Below in Figures 27 and 28,

code files are shown displaying the potential plan to develop the

-in libraries will be referenced to create code with the necessary

Pseudo-code header file for Qt Bluetooth communication

The vector of encoded track pieces created by the track parser must be sent to the

vehicle’s microcontroller one at a time. The vehicle will process each of these instructions for a

enough to ensure that track piece instructions won’t overlap. This,

combined with request commands from the vehicle, will ensure that the vehicle receives a single

To add another

failsafe, the incoming commands will be stored locally on the vehicle. The application located on

the terminal is being written within the QT framework using C++. Below in Figures 27 and 28,

displaying the potential plan to develop the

in libraries will be referenced to create code with the necessary

for Qt Bluetooth communication

Figure 28: Pseudo

37

Pseudo-code source file for Qt Bluetooth communication

ource file for Qt Bluetooth communication

38

RC Vehicle AA, AH

 In order to accomplish the goal of following a user-created track, a vehicle needs to be

created that can receive the parsed track data and convert that into the physical movement of the

vehicle. For this application, an RC car was chosen as the best option of vehicle. An RC car is

an inexpensive, low-power option for a vehicle that can be easily tested out in an indoor

laboratory setting. The RC vehicle that was used in this experiment was a simple childhood toy

of one of the members of the design team. After stripping the remote control components off the

car, the only electronics that remained intact were the 3.3V DC motor that drove the rear wheels,

and the rotational servo motor that turned the front wheels. The Level 2 Block diagram and

functional requirement table for the vehicle are shown below in Figure 29 and Table 6.

Figure 29: Car Level 2 Block Diagram

39

Module RC Car

Inputs - Command Signal

- Object Detected

- Power Source

- Motor Shield Power Source

Outputs - Response Signal

Functionality The power source and the motor shield power source supply the power

necessary to operate the micro-controller and the motor shield. The

command signal input communicates a binary-coded message from the

PC to the micro-controller, which distributes the necessary voltages to

the servo and motor through the motor shield to control the speed and

direction of the car. An object detection signal is relayed to the micro-

controller from the collision sensor. This detection signal and the GPS

location are sent back to the PC as the response signal. The response

signal is broken down and analyzed by the PC algorithm, and is

returned to the car as the command signal.

Table 6: Car Functional Requirement Table

 Once the car was stripped of the old electronics, the new electronics were added onto the

vehicle. The foundation of the new vehicle is the microcontroller. The microcontroller acts as

an intersection between input and output signals and the required response. The vehicle will use

an Arduino Mega 2560 microcontroller. This microcontroller was chosen for this application

because it has 54 digital IO pins, 16 analog IO pins, 256k of memory, and runs off a 16 MHz

clock. This board has more than enough IO pins to run all the onboard electronics, has sufficient

memory for programming, and meets the low power requirements desired by the engineering

requirements. The microcontroller layout is diagramed in Figure 30. Also, the wiring pinout

required by the onboard embedded components can be found as Figure 31. These pin

requirements will be explained later.

40

Figure 30: Microcontroller Layout

41

Figure 31: Arduino Mega 2560 Microcontroller Pinout

 This microcontroller will be coupled with a motor shield, namely the Adafruit Motor

Shield V2. The motor shield is a specialized full-bridge driver that steps up the input voltage and

current to match the needs of the DC motors driving the vehicle. The motor shield takes input

signals from the microcontroller and provides the correct gain to properly drive the motor. The

signals to drive the motors would be determined by the PC and sent to the microcontroller. This

information would include encoded instructions that the microcontroller would pass on as

voltage signals to the motors. The pin requirements for the Motor Shield can be found on Figure

32. These pin requirements will also be explained later.

42

Figure 32: Adafruit Motor Controller Pinout

 One of the most significant functions of the RC vehicle is wireless communication.

Communication for between the vehicle microcontroller and the PC was determined to be over

the Bluetooth frequency band. Using a Bluetooth transceiver, the RC vehicle would send motor

and servo commands to the vehicle, and report sensor information to the PC with the

microcontroller acting as a middleman. The pinout for the Bluetooth communication device can

be found below as Figure 33.

Figure 33 – Bluetooth Pinout Diagram

43

 Along with the microcontroller, motor shield, and Bluetooth transceiver, there are several

more pieces of embedded hardware that are used on the vehicle. An important portion of the

embedded hardware is the inertial measurement unit (IMU). The inertial measurement unit

chosen for this project has an onboard gyroscope, accelerometer, and compass. Using a filter,

which will be explained in greater detail in the Collision Detection/Avoidance section, an

accurate location can be determined in real-time to determine variation from the given track. This

location is based on the acceleration and velocity determined by the accelerometer and the

direction determined by the compass. If this occurs, algorithms would execute that compute a

corrective movement for the vehicle. If the vehicle strays from the track, this information will be

used to determine how to return to the desired path. The pinout for the IMU device can be found

below as Figure 34.

Figure 34 – Internal Measurement Unit Pinout Diagram

VIN

3VO

GND

SCL

SDA

GINT

GRD

LIN1

LIN2

LRD

44

 Another sensor that could be used to determine vehicle state would be a GPS module.

The module would be used to track the current location of the vehicle. Initially, the GPS unit

was intended to be used to track the actual position of the vehicle as it moved along the track.

However, the unit was not able to provide precise enough positional feedback, so the IMU was

used in its place for that purpose. The GPS was left connected to the vehicle circuit for future

applications. The GPS device pinout can be found below as Figure 35.

Figure 35 – GPS Pinout Diagram

 In order to provide enough power to supply the motors, servos, and embedded hardware,

great care was taken into the choice of power supply for this project. Initially, the vehicle was

designed to run off of a 9 VDC batteries as the power supply. This power supply has been

chosen because it is powerful enough to supply enough power to operate all of the onboard

electronics as well as power the motors and motor drives. To calculate the maximum power

required by the onboard electronics, the maximum current draws for each component were found

by looking at the datasheets associated with the respective components. The power requirements

for each component, as well as the overall amp draw and power draw for the onboard

components are compiled in Table 7. Using a typical 9VDC alkaline battery, the minimum

runtime of the vehicle from the battery can be determined from assuming the maximum amp

draw is constantly used by the vehicle. With the average 9V alkaline battery being 600 mA·hrs,

the vehicle would have a minimum runtime of 2.92 hours. This is also shown in Table 8.

45

Table 7: Power Calculations Table

Table 8: Vehicle Runtime Calculation Table for 9VDC Alkaline Battery

 However, the one factor that is not included in these measurements is the current being

drawn by the motor. This current draw varies not only with the velocity and acceleration

required of the motor, but the current draw also increases as the input reference voltage for the

motor shield rectifier varies. As the alkaline battery was used more over a period of time, the

voltage provided by the battery would decrease due to the motor load. As less of a voltage was

sourced, more current was required by the motor to move the vehicle. With this being factored

in, the alkaline battery was only getting about 30 minutes of use out of each battery before there

was not enough power available by the battery to drive the motor. With less power available to

the motor, the vehicle was moving much slower than normal, and was unable to travel the

desired lengths and angles that were desired. By having a more constant, regulated voltage as

the motor shield reference, the motor would have a much more consistent voltage to reference

for the motor output, meaning more consistent, repeatable results.

 To solve this, one 12 VDC Nickle-Metal Hydride rechargeable battery and one 7.5 VDC

Nickle-Metal Hydride battery were used in place of the 9 VDC alkaline batteries. The 7.5 VDC

battery was connected only to the Arduino Mega microcontroller. By having this component on

a separate power source, there is less noise that is seen in the other embedded components and

the microcontroller can operate independently of these components. The 12 VDC NiMH battery

is used as the source for the onboard embedded components, namely the ultrasonic range

detectors, Bluetooth device, IMU device, and GPS device and motor shield. The NiMH has

2000 mAH of stored power amounts to 16 hours of use, which compared to the alkaline battery,

proves that it is the better choice. These calculations are found in Table 9.

Table 9: Vehicle Runtime Calculation Table for 12 VDC NiMH Battery

46

 All these components operate off a 5 VDC input. To step the 12 VDC down to 5 VDC, a

voltage regulating circuit will be introduced. This regulation will be accomplished by

introducing the voltage regulation circuit shown in Figure 36. This circuit utilizes the LM7805

voltage regulator that regulates input voltage from a range of 5-18 VDC to a nominal output

voltage of 5 VDC. Two capacitors, one at the input (10 µF) and one at the output (1 µF), will be

added in parallel to clean up any variance or ripple in the signal.

Figure 36: 12 VDC to 5 VDC Voltage Regulator Circuit

 The 5 VDC output from this circuit acts as the input source for the IMU, GPS, and

Bluetooth devices as shown below in Figure 37. Figure 37 also shows the input and output wires

from each device that will be connected back to the microcontroller. The circuit connected in

Figure 34 was constructed on a solder board and was mounted onto the vehicle.

Figure 37: Solder Board #1 Circuit Design

47

 As shown above in Figure 37, each device used only requires certain inputs and outputs

to accomplish the tasks that are required for this application. The IMU uses only the SCL (serial

clock) and SDA (serial data) pins to communicate accelerometer, gyroscope, and compass data

back to the Arduino controller. The serial data is transmitted every time the serial clock pin is

pulsed, which is a parameter that can be set by the user. The GPS device communicates the

relative position of the vehicle through the Rx and Tx pins. Transmissions (Tx) from the GPS

are received by the microcontroller (Rx). The opposite is true for transmissions from the

microcontroller to the GPS. The communication pins used on the microcontroller for the GPS

data transfer are Digital I/O pins 18 and 19, respectively. The same communication scheme of

transmitting and receiving data is true for the Bluetooth device. This communication path is

chosen between Digital I/O pins 0 and 1. Also, a reset function is required by the Bluetooth for

testing purposes. This Reset pin is connected through a 1 µF shunt capacitor to the Reset pin

found on the motor shield.

 Below in Figure 38 a picture of the completed RC vehicle is shown. The electronics

were mounted on a board made from fiberglass. Fiberglass is a non-conductive material, so it

serves as a good medium with which to mount the devices. Brackets were also made to mount

the ultrasonic range detectors onto the front of the car. The use for these devices will be

explained later in the report. The vehicle, as designed, meets both the size and weight

requirements that were outlined in the engineering requirements for the project.

Figure 38: Photographs of vehicle used in project application (top and side view)

48

 The microcontroller is controlled by embedded C code compiled in the open-source

environment. This code will be programmed to gather sensor data, control the motors, and

communicate with the terminal. A portion of the code will be functionality referenced from

open-source libraries while the rest will be developed as a custom solution for this project. Many

of the libraries were from Adafruit repositories. Ada fruit manufactured many of the components

used for the project, and their libraries were used for simple interfacing between devices. The

custom solution will function out of a header file that encapsulates all functions needed for the

vehicle to operate.

 Arduino code is broken into two, fundamental sections. Before these sections are entered,

all functions to be used are defined in a header file. The specialized header file has functionality

for course correction, obstacle detection, and code decoding among others. A sample of pseudo-

code for the header file is shown below in Figure 39.

Figure 39: Pseudo-code header file of the embedded code

49

The first, fundamental section of Arduino code is setup(). Before setup() is entered, all

global variables used in the code are defined. Once these declarations are complete, control

moves to the setup() block. In setup(), previously defined declarations are initialized. As shown

in the pseudo-code below, the Arduino is commanded to enable serial data transmission. Also, a

local Bluetooth connection is set up using a third-party module so that the vehicle and

application terminal can communicate. Following Bluetooth initialization, the ultrasonic sensors

are configured to the proper pins. Lastly, the motor shield is initialized. The motor shield

communicates with the microcontroller using I2C in a serial format. Below, a simplified

flowchart shows the general process of the setup() block in Figure 40. Then, in Figure 41 and

Figure 42, pseudo-code for everything up to and including the setup() block is shown.

50

Figure 40: Flowchart of Arduino code setup

Figure 41: Variable Declarat

51

Variable Declaration Pseudo-code for the Arduino

Figure

After the setup() block is completed, control moves to the

loop() block of Arduino code is where all action takes place. As can be surmised by the name,

the loop() block is an infinite loop. When compiled and uploaded to the microcontroller, the code

will run indefinitely unless a pre-

For this action, several actions take place every time the loop is completed. First, data is read

from the Bluetooth serial stream. This data will include the newly requested command that will

be run during the current loop cycle

car following its instructions. This prevents damage to the vehicle’s mechanical componenets.

Second, the next command to be followed will be run prior to execution. The command will be

dissected to recover pertinent information for the microcontroller's servo and motors. This

information includes, angle, time, and voltage. Before executing the next command, the third

step in the loop() block will check the proximity readings of the ultrasonic sens

is near, the motors will be sent an evasive maneuver command. An algorithm will then be

completed to find the best route to return to the correct path while avoiding the obstacle. If no

obstacle is detected, the fourth step is to run th

completed, the IMU data stream will be check to determine the vehicle's location. The inertial

measurement unit's sensor data will first be filtered to remove excess noise from the signal. Once

the acceleration and angular velocity values are ready, the information will be sent to the

52

Figure 42: Setup() block of the Arduino code

block is completed, control moves to the loop() block of the code. The

block of Arduino code is where all action takes place. As can be surmised by the name,

block is an infinite loop. When compiled and uploaded to the microcontroller, the code

-programmed stimulus causes the code to break out of the loop.

For this action, several actions take place every time the loop is completed. First, data is read

from the Bluetooth serial stream. This data will include the newly requested command that will

be run during the current loop cycle. This command will then be checked for errors prior to the

car following its instructions. This prevents damage to the vehicle’s mechanical componenets.

Second, the next command to be followed will be run prior to execution. The command will be

to recover pertinent information for the microcontroller's servo and motors. This

information includes, angle, time, and voltage. Before executing the next command, the third

block will check the proximity readings of the ultrasonic sensors. If an obstacle

is near, the motors will be sent an evasive maneuver command. An algorithm will then be

completed to find the best route to return to the correct path while avoiding the obstacle. If no

obstacle is detected, the fourth step is to run the command. While the movement is being

completed, the IMU data stream will be check to determine the vehicle's location. The inertial

measurement unit's sensor data will first be filtered to remove excess noise from the signal. Once

gular velocity values are ready, the information will be sent to the

block of the code. The

block of Arduino code is where all action takes place. As can be surmised by the name,

block is an infinite loop. When compiled and uploaded to the microcontroller, the code

to break out of the loop.

For this action, several actions take place every time the loop is completed. First, data is read

from the Bluetooth serial stream. This data will include the newly requested command that will

. This command will then be checked for errors prior to the

car following its instructions. This prevents damage to the vehicle’s mechanical componenets.

Second, the next command to be followed will be run prior to execution. The command will be

to recover pertinent information for the microcontroller's servo and motors. This

information includes, angle, time, and voltage. Before executing the next command, the third

ors. If an obstacle

is near, the motors will be sent an evasive maneuver command. An algorithm will then be

completed to find the best route to return to the correct path while avoiding the obstacle. If no

e command. While the movement is being

completed, the IMU data stream will be check to determine the vehicle's location. The inertial

measurement unit's sensor data will first be filtered to remove excess noise from the signal. Once

gular velocity values are ready, the information will be sent to the

53

terminal for course correction. The information received by the application terminal from the

inertial measurement unit is then used to determine the accuracy of the vehicle's position relative

to the desired location. If a discrepancy is detected, the final action of the loop() block is to

calculate a corrective path that will return the vehicle to the proper path. In the figures below, a

flowchart outlines the actions taken in the loop() block, and pseudo-code outlines the potential

code that will be developed.

54

Figure 43: Flowchart of the loop

Figure

55

Figure 44: Local loop() variables

Figure

56

Figure 45: Embedded loop() code

57

Collision Detection / Avoidance BR, TV, AA

 The collision detection and avoidance component is unique in that half of it takes place in

the RC vehicle’s hardware while the other half takes place in the application’s software. The

detection half requires that a proximity sensor on the vehicle is able to detect any objects

obstructing its path. Meanwhile, the collision avoidance half of this component must use an

algorithm to avoid that obstruction.

 The proximity sensor must have a long enough range to allow the vehicle to both

acknowledge the obstruction, send a collision PDU to the application, and receive a response

generated by the collision avoidance algorithm. In order to properly sense any obstructions, the

sensor must be mounted as far in the front of the car as possible. It may also need some

proximity sensors on each side to help the algorithm determine which way to go to avoid the

obstruction.

 The collision algorithm must take in the information provided by these proximity sensors,

as well as the vehicle’s current and target locations in order to help the vehicle avoid the

obstruction and get back onto the desired path. This means that it will have to create new

instructions for the vehicle to follow and send them through data transmission. It is also possible

that the obstruction is in the way of one or more of the vehicle’s target locations. If this is the

case, the algorithm must recognize this and skip these locations, preferring to move forward

instead. Figure 46 contains this component’s block diagram, and Table 10 contains its

corresponding Functional Requirement Table.

Figure 46: Level 2 Collision Detection / Avoidance Block Diagram

58

Module Collision Detection/Avoidance

Inputs - Collision Signal

Outputs - Command Signal

- Object Detected

Functionality Once the proximity sensor on the car senses a nearby object, an object

detection signal is sent from the car to the PC software. The incoming

collision signal is then processed by the collision avoidance algorithm,

which determines the path correction for the vehicle to avoid the

object. The corrected path is then sent as the command signal from the

software back to the micro-controller on the car.

Table 10: Collision Detection / Avoidance Functional Requirement Table

 Another component of the microcontroller feedback to the system is the error tracking of

the position of the vehicle. In order to verify that the vehicle has traveled along the desired path,

real-time data needs to be fed back to the microcontroller in order to determine its actual position

compared to its desired position. To do this, an onboard inertial measurement unit (IMU) is

going to be used. This IMU has 6 degrees of freedom, meaning that the accelerometer

component of the IMU has 3 degrees of freedom and the gyroscope component has 3 degrees of

freedom. Using these components, the IMU will be able to sense what direction the vehicle is

turning, and how fast the vehicle is turning. With this data fed back to the microcontroller, the

position of the vehicle can be tracked through incorporating a complementary filter. A

complementary filter, in its most basic sense, utilizes a combination of a high pass filter, a low

pass filter, and numeric integration to determine more accurate angle and angular velocity

measurements than can be found through direct measurements from the IMU. The sensor data

collected by the IMU has a tendency to be noisy and can vary greatly from what the actual value

is. The complementary filter eliminates this noise and will give a more accurate description of

the actual position of the vehicle by focusing on calculating a better angle measurement for the

direction of the path of the vehicle. The complementary filter uses the following equation to

accomplish this:

 � 0.98	'"()� * (+,-.'/' � 0/� * 0.02	'11.'/'�

 The angle for the current time interval, θ, is not simply taken from the gyroscope data,

rather it is the integration of the gyroscope data added to the angle of the previous time step.

This is then added with the accelerometer data, which is used as an angle measurement using the

arctangent function. These two quantities are multiplied by scalar constants, whose sum equals

one. The past angle and gyroscope integrated sum is weighted much more than the

accelerometer angle, as seen in the equation above. This weighting ensures that the

measurement values will not drift in the long term, and the measurements will be very accurate

in the short term.

 This type of filter utilizes 3 main mathematical functions in order to filter out the

unwanted noise: integration, a low-pass filter, and a high-pass filter. The integration that is used

takes a summation of the angular rotation of the vehicle over one time interval through

59

integrating the angular velocity measurement from the accelerometer with respect to time. This

gives the change in angular position since the last sampling instance. This is then added to the

angular position of the last sampling instance, which results in an approximation of the angular

position of the vehicle for the current sampling instance. This results in having incorporated the

equivalent of a low-pass filter to the data. It is filtering out short-term fluctuations in the

vehicle’s angular position, and only allowing long term changes to be experienced. Any change

in position is going to be incremental instead of instantaneous. The small scalar constant

multiplied with the accelerometer angle also acts as a low-pass filter by only allowing that

quantity to have a small impact on the current angle. The larger scalar constant multiplied with

the gyroscope integration and previous angle acts as a high-pass filter. Acting in the opposite

manner of the low-pass scalar constant, it allows for those quantities to have a larger impact on

the current angle than the accelerometer angle and prevents the measurements of the vehicle’s

path to drift over time. The high-pass filter and the low-pass filter operate on the same time

scaling, so they are being sampled at the exact same frequency.

 Through comparing the desired vehicle position with the position measured by the

complementary filter, the positional error of the vehicle can quickly be calculated. The error will

be used to adjust the next movement command to bring the vehicle back to the desired position.

 For the purpose of collision detection, three ultrasonic range detectors were attached to

the front of the vehicle. By having one face straight ahead, one at a 45 degree angle to the right,

and one at a 45 degree angle to the left, a full view of any object that may encounter the vehicle

can be seen. Through chaining these sensors together and using analog voltage feedback, the

vehicle is able to measure the distance an object is from the front of the vehicle, ranging between

3 and 72 inches from the front of the car. The circuit for the interconnection of the ultrasonic

sensors can be found below as Figure 47.

Figure 47: Proximity Sensor Circuit Diagram

60

Parts List AH

Figure 48: Parts List

61

Design Team Information BR, TV, AH, AA

Alex Aubihl - Electrical Engineer - Hardware Manager

Andrew Hopwood - Computer Engineer - Project Leader

Benjamin Riggs - Computer Engineer - Software Manager

Tyler Vance - Computer Engineer - Archivist

62

Conclusion AH

The focus of the free-range pre-programmed car is to develop a system that can realize a

user input in the form of motion. In order to accomplish this, the project will be broken into

several components. First, input will be gathered and processed as a user inputs the desired track.

Once the track has been processed, the information will be sent across a wireless connection to

the radio-controlled vehicle. The vehicle will then execute the desired track. If an obstacle is

detected, an interrupt will be sent through the vehicle's microcontroller to the computer for a new

route to be determined.

 After over a year of planning, designing, implementing, and testing our vehicle

application, the project can be considered a success. The vehicle is able to use parsed data

commands created by a user through the PC interface and autonomously manuever the vehicle

about the desired track path. The vehicle is also able to measure the current position of the

vehicle and compare that to the desired position from the algorithm. This difference is calculated

as the positional error, and the vehicle corrects for this error in the next track piece sent by the

user. The vehicle is able to incoroporate sensors on the front of the vehicle and avoid running

into potential obstacles by braking the motors within a range of potential contact. All things

being considered, this project was a success.

63

References TV, AA

 [1] IEEE standard 802.15.1-2005, Wireless medium access control (MAC) and physical layer

(PHY) specifications for low-rate wireless personal area networks (WPANs). 2005. Institute

of Electrical and Electronics Engineers, 802.15.1-2005.

[2] Fengchuan, Zhang. 2013. Remote control toy device. China filed 2013.

[3] Krichmar, Jeffrey, and Oros, Nicholas. Android based robotics: Powerful, flexible and

inexpensive robots for hobbyists, educators, students and researchers. 2013 [cited March 14

2014]. Available from http://www.socsci.uci.edu/~jkrichma/ABR/index.html.

[4] Oriana, Riva, and Jaakko Kangasharju. 2008. Challenges and lessons in developing

middleware on smart phones. IEEE Computer Society (October): 23-31.

[5] Osthege, Michael. 2013. Arduino as a MIDI/Bluetooth relay for Windows 8.1 apps MSDN.

[6] Tze Man Ho, Patrick. 2002. RC car device. United States filed 2002.

[7] Qt Project Hosting. 2014. Documentation available from http://qt-project.org/

64

Appendices BR, TV, AH, AA

Referenced Datasheets:

WiFi Module: http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Wireless/WiFi/WiFly-RN-XV-

DS.pdf

Bluetooth Module: http://m2.img.dxcdn.com/CDDriver/sku.121326.pdf

Microcontroller: http://arduino.cc/en/Main/ArduinoBoardMega2560

Ultrasonic Range Detector: http://users.ece.utexas.edu/~valvano/Datasheets/HCSR04b.pdf

Infrared Range Detector:

http://www.acroname.com/products/Sharp_GP2D120_DATA_SHEET.pdf

Motor Controller: http://arduino.cc/en/Main/ArduinoMotorShieldR3

Motor:

http://www.robotgear.com.au/Cache/Files/Files/136_Mabuchi%20motor%20fa_130ra%20datash

eet.pdf

GPS: http://cdn.sparkfun.com/datasheets/GPS/EM506_um.pdf

Servo: http://www.servocity.com/html/hs-5055mg_servo.html#.VDyKQ_nF_HU

65

Matlab Simulation Code:

% position of the car [x,y]

% velocity of the car [v_x,v_y]

% Target points obtained based on the predetermined path

[x_p,y_p]=Path_d(1,10,10);

T=100;

index = 1;

x=zeros(1,100);

y=zeros(1,100);

v_x=zeros(1,100);

v_y=zeros(1,100);

max_turn = (pi/6);

x(1)=0;

y(1)=0;

v_x(1)=1/sqrt(2);

v_y(1)=1/sqrt(2);

for t=1:T-1

 if t==1

 index = index + 1;

 else

 if (x(t-1) < x_p(index) && x(t) >= x_p(index)) || ...

 (x(t-1) > x_p(index) && x(t) <= x_p(index)) || ...

 (y(t-1) < y_p(index) && y(t) >= y_p(index)) || ...

 (y(t-1) > y_p(index) && y(t) <= y_p(index))

 index = index + 1;

 end

 end

 if index > length(x_p)

 break;

 end

 x_t = x_p(index);

 y_t = y_p(index);

 %destination velocity

 [vx_t,vy_t]=ajdust_v(x_t,y_t,x(t),y(t),v_x(t),v_y(t),max_turn);

 x(t+1)=x(t)+vx_t;

 y(t+1)=y(t)+vy_t;

 v_x(t+1)=vx_t;

 v_y(t+1)=vy_t;

end

x_final=zeros(1,t);

66

y_final=zeros(1,t);

for i=1:t

 x_final(i) = x(i);

 y_final(i) = y(i);

end

plot(x_final,y_final,'-k')

hold on

plot(x_p,y_p,'-r')

function[vx_t,vy_t]=ajdust_v(x_t,y_t,x,y,v_x,v_y,angle)

dx=x_t-x;

dy=y_t-y;

r=sqrt(dx^2+dy^2)/sqrt(v_x^2+v_y^2);

vx_t=dx/r;

vy_t=dy/r;

end

%predefined path

function[x_p,y_p]=Path_d(S,K,E)

% S is the predetermined shape of the path

% K is the steps we would like to focus on

% E is the horizontal length we predefine

%x_p = 0:(E/K):E;

%if S==1

% y_p=sqrt(25-(x_p-5).^2);

%end

x_p = zeros(1,6);

y_p = zeros(1,6);

x_p(1) = 0;

y_p(1) = 0;

x_p(2) = 1;

y_p(2) = 3;

x_p(3) = -5;

y_p(3) = 5;

x_p(4) = -5;

y_p(4) = 8;

x_p(5) = -3;

y_p(5) = -2;

x_p(6) = 4;

y_p(6) = -7;

end

67

function[x_t,y_t,index]=Target_d(x_p,y_p,x,y,t,index)

if t==1

 index = index + 1;

 x_t = x_p(index);

 y_t = y_p(index);

else

 if (x(t-1)<x_p(index) && x(t) >= x_p(index)) ||...

 (x(t-1)>x_p(index) && x(t) <= x_p(index)) ||...

 (y(t-1)<y_p(index) && y(t) >= y_p(index)) ||...

 (y(t-1)>y_p(index) && y(t) <= y_p(index))

 index = index + 1;

 end

x_t = x_p(index);

y_t = y_p(index);

x_p(index)

end

Appendix Figure 1: Matlab Simulation Code

	The University of Akron
	IdeaExchange@UAkron
	Spring 2015

	Free-Range Pre-Programmed RC Car
	Alexander L. Aubihl
	Andrew S. Hopwood
	Benjamin J. Riggs
	Tyler P. Vance
	Recommended Citation

	Microsoft Word - 437706-convertdoc.input.425483.R_NoN.docx

