The University of Akron
IdeaExchange@UAkron

The Dr. Gary B. and Pamela S. Williams Honors

Honors Research Projects College

Spring 2015

Free-Range Pre-Programmed RC Car

Alexander L. Aubihl
University of Akron Main Campus, alaS4@zips.uakron.edu

Andrew S. Hopwood
University of Akron Main Campus, ash40@zips.uakron.edu

Benjamin J. Riggs
University of Akron Main Campus, bjr4d0@zips.uakron.edu

Tyler P. Vance
University of Akron Main Campus, tpv3@zips.uakron.edu

Please take a moment to share how this work helps you through this survey. Your feedback will be
important as we plan further development of our repository.
Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research projects

b Part of the Electrical and Flectronics Commons, Systems and Communications Commons, and
the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation

Aubihl, Alexander L.; Hopwood, Andrew S.; Riggs, Benjamin J.; and Vance, Tyler P,, "Free-Range Pre-Programmed
RC Car" (2015). Honors Research Projects. 153.
http://ideaexchange.uakron.edu/honors_research projects/153

This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams
Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio,
USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of
IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

http://ideaexchange.uakron.edu?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honorscollege_ideas?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=http://ideaexchange.uakron.edu/honors_research_projects/153
http://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ideaexchange.uakron.edu/honors_research_projects/153?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Senior Design Project Proposal

Free-range Pre-programmed RC Car

Alex Aubihl EE
Andrew Hopwood CpE
Ben Riggs CpE

Tyler Vance CpE

Table of Contents

LI L= 2 T T PSPPSR 1
TabIE Of CONTENTSoeiiiiiiiii ettt st e s be e s bt e e s be e sabe e e baeaesabaeesbeeesaseesnbaesnssessaseenn 2
1Y o1 1 - T SRR 3
Problem SEat@mMENTc.ooiiiiiiie e sttt be e st e sbe e steeeba e e ateesabee s 4
N =T=To B = 1T 41T o | SRR 4
(0] o [Tt 4 AV LI =14 =1 1 0= | APPSR 4
RESEAICIN SUINVEY ..ttt e e e e e e e e e e e st e e e e e e e e e e sataeeeeeaeaeeesasnstaaeeaaseaasssteseeaeseaanstraneaaans 5
Marketing REQUIFEMENTSuviiiei ittt e et e e e e e e et e e e e e e e e ee b abtaaeeeeeeeeanntaseeaesessnsrsaneaanns 7
(0] oY [=Tot 4 AV LT < UR 8
Design Requirements SPecificationcccoouiiiiiiiiiiiiii e 9
S aFea T =TT a T T =T [T =] 0 =] LSO ORRTOTRRPRPRPRIRS 9
=T o T8 LT =T g =T 0 AV = Rt 11
Accepted TEChNICAl DESIZN..........coooiiiiiiee e e e et e e e etre e e st e e e e ebteeessataeee e sntaeeeenseneasanes 12
OVBIVIBW it e e e e e e e e e s e s s e s s e aeaeaeaeaaaaaans 12
L0 L = 1= 1 ol P P PP PP PP U 14
(G =T o 1Tl U LY =T [a1 T -SSR 15
B 1o Q2 T SRRSOt 28
D1 T I =Y 1 0 03] T o Rt 33
SOV o 1Tl L= USRSt 38
COlliSTON DETECEION/AVOIHANCE ..veeiieeeeee ettt ettt ettt e e et e s e et e e seateesssattesssasssteesassssessasseesassreeesasrseess 57
T) I SR 60
Design Team INFOrMAtioNooiiiiiiii e e e e e e st e e e e e bte e e s aaabee e e enntaeeeenneeas 61
(oo T ol [1 1Yo T EO PRSP 62
] =] =T L= U 63
FaY o] o111 T Lo PRSP 64

Abstract BR, TV, AH, AA

There is a growing interest in the capabilities and utilization of autonomous vehicles.
The objective of this project is to design a small scale illustration of an autonomous vehicle
driven by user input. An application will be designed that will allow a user to create a track that
an RC car will accurately follow. As the car follows the track, a microcontroller on the vehicle
will send movement information back to the application. This information is used by the
application to process where the vehicle is currently at and where it needs to go. While in
motion, on-board sensors will actively detect obstacles in the path and adjust the vehicle’s
direction to avoid collision.

Problem Statement Br, Tv, AH, AA

Need Br, v, AH, AA

The free-range pre-programmed RC car has many possibilities, ranging from
entertainment to a small-scale representation of autonomous vehicles. The technology could be
employed in various environments depending on the customer's need. An example would be an
autonomous vehicle on a factory floor with scheduled tasks throughout the building. The track
would be determined by user input from the PC application’s user interface. The input would
then be converted into a readable form that directs the motion of an RC car. The vehicle would
be able to detect obstacles to avoid collisions and also correct its course if necessary. After
receiving the initial command, the vehicle would successfully complete its movement and then
wait for a new order.

Objective Br,1v, AH, AA

The objective of the project is to have a remote controlled vehicle be able to
autonomously maneuver along a desired path set by the user. An application will be created on a
personal computer that allows the user to view the different performance characteristics of the
vehicle and to design the path of the vehicle. The program will allow the user to select between
several premade track pieces and connect them into the shape of the desired path. The user will
be able to select track pieces that will then be appended one by one to the current location in the
track. These tracks can also be saved and reloaded at will by the user. After executing the track,
the information of the user-designed path will be wirelessly transmitted to the vehicle. The RC
car will then follow this track at a given velocity while avoiding any potential collisions.

Research Survey sr,1v, An, aa

One option for the application is building it using C++, Qt libraries, and Windows APIs.
Qt has libraries that assist the development of both Wi-Fi and Bluetooth communication. The
application will instantiate communication to the vehicle and continue doing so until the
application is powered down. Algorithms will be constructed inside the code to calculate the data
that needs to be sent to the vehicle to control the motor and sensors. Error handling will also
have to be implemented to keep the vehicle on the determined path. If the vehicle strays off
course, the error handling will guide the vehicle back onto the proper path. In addition to error
handling, the car will also have to avoid colliding with obstacles in the path.

Using Bluetooth as a means of communication between the application and the vehicle
provides both advantages and disadvantages. The main advantage of using Bluetooth is the cost
and power efficiency of operation. When compared to Wi-Fi communication, the amount of
power consumption for Bluetooth is significantly less. According to a comparative study
performed by Oriana Riva from ETH Ziirich and Jaakko Kangasharju from Helsinki University
of Technology, the consumption of power in several Nokia cell phones was more than 100 times
greater when using Wi-Fi as compared to using Bluetooth [4]. The reason for this significant
difference in power consumption is directly related to the vast difference in data transfer rate.
The theoretical data transfer rate for Bluetooth is nearly 11 times slower than Wi-Fi data transfer
[4]. However, if the group wanted to incorporate video communication or derive complex sensor
data, Wi-Fi communication would be better suited for higher data transfer rates. According to
IEEE standard 802.15.1-2005, the effective range for Bluetooth communication is between 1
meter and 100 meters, depending on the class of Bluetooth device used [1]. The application will
limit the maximum range the vehicle can be away from the user, thus helping to eliminate
problems the vehicle will have with losing communication. If communication with the vehicle is
lost, a mechanism will be hardwired into the vehicle to shut the motors off.

One of the main limitations of the design of the project is that the user can only choose
between premade track pieces, which limit the user’s ability to control the vehicle to go wherever
the user pleases. The vehicle will only be capable of following the distances and curve angles of
the premade track pieces, and not be able to make sharp or gradual turns. Despite this limitation,
there should ideally be a wide enough selection of track pieces for the user to design whatever
track he or she desires. While this is a limitation, it was a strategic decision by the designers to
develop the interface as such. The program will be able to better track the position of the vehicle
by only allowing it to travel at certain speeds and turn at certain angles. Without this limitation,
the program would have to handle and compensate for the error of invalid maneuvers. The
predetermined pieces have already been tested and are known to not cause error with the vehicle.

A limitation of the current technology is that similar programs for remote control vehicles
are made almost exclusively for Apple and Android products. By being designed on these
operating systems, this product can only be operated on either Apple or Android devices,
meaning they can only be run using smart phones and tablets. With the designers choosing to use
a Windows application, the program for the vehicle could be used on a desktop computer with
Windows. By using Windows as the operating system, the vehicle and program will have more
of a marketable value, considering that most companies use Windows in their offices.

Design teams at the University of California have developed robotic vehicles that follow
the same general concept that will be used in making this project. By using off-the-shelf
components, the UC design teams have been able to create several different autonomous vehicles
incorporating Android operating systems, Arduino electronic boards, and R/C vehicles [3].

5

Through utilizing off-the-shelf components, they were able to cost-effectively create an
autonomous system where sensors and other electronic components could be added without
needing extra fabrication. To communicate between the Android operating system and the
vehicle, a Bluetooth connection was established to transmit/receive data. A C++ application was
written to allow communication between the Android operating system and a desktop computer
over Wi-Fi. Through UDP packets, information such as video transmission, sensor signals, and
GPS locations can be transmitted between the Android operating system and desktop application
[3].

One patented technology that is very similar to our idea is a remote controlled toy device
that uses a single chip main control unit. Its developer, Zhang Fengchuan of China, created a
processor chip that collects video data and transmits a compressed signal over a Wi-Fi
communication channel. By adding this chip onto a remote controlled toy, the user can control
the toy using a smart phone, tablet, or personal computer. The chip receives the input controls
from the user, relays the information to the motors, LED lights, and related electrical control
components, and transmits measured data back to the user interface [2]. The design team would
like to implement a system similar to this processor chip in our vehicle. Being able to wirelessly
translate commands from an application-based system to the hardware of the vehicle is the
ultimate goal of this project. Rather than designing a processing chip to do this, the group would
prefer to use off-the-shelf components to implement the same process.

Another patent that relates to our project idea is a wireless system that was developed to
control an R/C car via a handheld game player device. Inventor Patrick Tze Man Ho was able to
achieve this by combining a game cartridge and a message transmitter. The user will be allowed
to control the R/C car with the handheld gaming device, and have the display screen of the
gaming device show functionalities to and for the remote control unit. The transmitter would
send a radio frequency to a receiver on the vehicle. Using the gaming device, the user would be
able to control the speed and direction of the R/C car [6]. This process of wireless
communication is the ultimate goal of the group, but the means of making the communication
between the vehicle and the user interface will be slightly different. Rather than using radio
frequency, the group will be using Bluetooth or Wi-Fi communication.

Marketing Requirements gr, v, a1, aa

The RC car should follow the designed track accurately

The program should be able to run on Windows PCs

The RC car should have a reasonable battery length

The RC car should avoid collisions

If off-track, the RC car should auto-correct

The program’s GUI should be simple to use

The application should take up as little memory/resources as possible
The system should be affordable

The parts should be interchangeable

The system should be lightweight and portable

Objective Tree Br,1v, An, Aa

An application to design a track for an RIC car to follow

[

Ease ofuse

Aocuracy

|

Run on Windows

Resource
Management

Accurate track
translation

Simplistic interface

Reasonable battery
life

Caollision Avoidance

Affardable

Low computer
resOUrce use

Auto-correction

Lightweight!
Porable

Figure 1: Objective Tree

Interchangeable
paris

Design Requirements Specification

Engineering Requirements sg, v, aa

In order to allow for the marketing requirements to be realized, there needs to be a set of
engineering requirements that need to be created that will allow for the vehicle and its system to
fulfill the requirements desired by the customer. By analyzing the requirements requested by the
customers, the group must determine how the best method of satisfying these requirements can
be achieved. Without detailing how the goals will be achieved, the group must unambiguously
state what goals and requirements the vehicle, the communication, and the PC must reach. These
engineering requirements need to be made not only to give a verifiable, traceable specification
for the vehicle to achieve, but also to set limitations on the maximum performance of the vehicle.
Below, the group will explain the engineering requirements they have determined for the Free-
Range Pre-Programmed RC Car system, and show how they relate back to and achieve the
marketing requirements. The engineering requirements and marketing requirements are also
compared in a tradeoff matrix, which demonstrates how increasing or decreasing one parameter
affects the other. The requirements table and tradeoff matrix are found as Figures 2 and 3,
respectively.

Marketing

_ Engineering Requirements Justification
Bequirements
Uszing a 3-%0OC batkery should pravide the schicle with
3,49 1. The vehicle should run off 2 3-%'0C battery. enough power ko operate all the components on the
wehicle.
2. The wehicle should bBe abl: bo communizate with Blu;lioo:h co.m_munlca.tlio; ptrofwdcs 1g°od_::ﬂ:s Far
1,2, 4,57 the PC program using Bluctooth communication at = .In-g rtcn::wlng._-crla aka from a tran=mither be o
. . receiver, Thiz serial data can then be converted to the
a maximum diztance of S0m.
necezsary yoltage command daka.
3. The maximum amount of memory taken up by Ey putting a limit on the amount of memory the syskem
2,6, T the application and azsociated Files should not can use up, the program will need ko be running az
exceed 2500k, efficiently as possible ypon completion.
The: slower the wehicle travels, the more accurately the
. wehicle can follow the path. By putting 2 maximum
4. The vehicle should travel ak a constant speed "))
. B . . walue on the speed of the wehicle, the wehicl: will not be
136 that iz dekermined by the user, with 2 maximum)) .
allowed to try and outperform itz physical capakility
speed of 06T metersizecond. A
and allow the PC enough time to compute the
necessary conkrols for the wehicle.
Eetting the detectable distance of the sensar o 2 feet
14 5. The wehicle should be able to detect possible | zhould allow the vehicle and aveidance algorithm plenty
' collisions at a minimum distance of 2 fect. of time to carreck the path of the vehicle to avoid the
abject.
The: uzer will have complet: frecdom ko create a track
&. The user interface should allow the uzer the af their chaazing, but will be limited in the track picces
1,7 ability to choose pre-determined track picces to they can seleck from. Pre-determining the track picces
farm a path of any desired shape. will allaw far the wehicle to Follow 3 smooth path, and
nok be restricked by difficult or impossible turns.
The: program will save cach path created as a track File.
7. Theinterface should save cach track 25 a File This Filz iz aFccﬁscd-by the brack parser bo break thc-
12,6 track down inke yehicle commands. The uzer can cazily
that can later be reloaded by the user. N .
access previously created tracks since they are zaved
into the PG memory.
If the wehicle strays from its desired path by 2
15 5. Barring collizion avaidance, the wehicle should | magnitude of mare than 1 Foat, the path For the wehicle
' have anoerrer bolerance of 5%, should be corrected bo account For the error the wehicls
iz expericncing.
The: GPE position of the vehicle should b used az
1 4.5 3. Tha vehicle should relay itz pasition back ta feedback from the vehicle ba the pragram, relating itz
" the PC uzing GPE coordinates. current position bo the desired position from the
creabed brack.
10. The project should nok cxceed 400 UED in Th‘_: d-:s_lgn group iz given 3 budget of 3400 fr:n-m the
= cost University of Akron, zo the budget for the project
o should nat exceed this budget.
. The vehicle should not cxceed 3 sie of D5om = L|!11|l:|n-g the size of the wehicle allows for a mer: user-
310 15em friendly system and cuts down on the force required by
) the yehicle bo drive Forward.
Limiting the weight of the vehicle allows for 2 mare user
310 12, The vehicle should not exceed 2 weight of 1kg. fricndly system and cutz down on the Farce required by

the vehicle bo drive Forward.

Marketing Requirements

The: BC car should follow the designed track accurately.

The program should be able bo run on Swindows kablets and PCs.

The: B car should have a reasonable batkery length.

The RC car zhould avaid collizians.

If aFF-track, the RC car zhould auto-correck,

The program’s GUI should be simple ko use.

The application should kake up as litkle memargdresources as possible.

The: sypstem should be: affordable.

||| on] se o o] =

. The parts should be interchangeable.

10. The system should be lightweight and portable.

Figure 2: Engineering Requirements Table

10

Requirement Matrix

Engineering Requirements
3
g | &
= A I - ~
Ylo|ls|8|s|S|gl 2|5
wolc| s E - (i = =
. . . . = - 0o s %] o
Engineering-Marketing Tradeoff Matrix 518|152 |c|2lx|&|l|8]|a g
= = £ = =l [© = w1
@ é = | B =|35|*F é G
£l = = | 8| ®
[+]
g
+ |+ |+ |+ |+ | |+ - + | + | - -
“ 1. The RC car should follow the designed track accurately. + T o 2 I Il 2 I
£ |2. The program should be able to run on Windows tablets and PCs. + o N ™~
g 3. The RC car should have a reasonable battery length. + |t ™4 T T
‘:-'I 4. The RC car should avoid collisions. + ™t T ™1
o|5. If off-track, the RC car should auto-correct. + ™1 T T
I:n 6. The program’s GUI should be simple to use. + o ™~
g 7. The application should take up as little memory/resources as possible. + T T TT| T
= |8 The system should be affordable. ™
E 9. The parts should be interchangeable. + | T
10. The system should be lightweight and portable. Ll [

Figure 3: Engineering/Marketing Requirement Tradeoff Matrix

11

Accepted Technical Design

Overview Br, TV, AH, AA

The general idea of the program is to take the user’s desired track and replicate it through
the RC car. In order to accomplish this, a combination of hardware and software will be needed.
Figure 4 is a level 0 block diagram of the system, which illustrates the simplest view of the
system. The functional requirement table for this block diagram is contained in Table 1.

I> Cirection

User Input — RC System — Speed
_1—) Distance
‘[Car Position
Figure 4: Level 0 Block Diagram

Module RC System
Inputs - User Track Input

- Car Position
Outputs - Direction

- Speed

- Distance
Functionality User inputs a track design into the RC system that can compute and

relay distance, speed, and direction to the RC car. The car position is

relayed back to the RC system.

Table 1: Level O Functional Requirement Table

In order to ease the design process, the RC system was broken down into functional
components. These components were divided and grouped according to functionality and each
component has its own inputs and outputs. These components and their connections are
represented in Figure 5. Each component’s functionality is broken down in Table 2.

12

Free-Range RC Car Level 1 Block Diagram

User Track
— User File Track
Interface Parser
Car
Instructions
Car
Instructions
/ /
Data COIIISI.On Sensor
T . — » Detection/ Inout
ransmission Collision Avoidance npu
\ Signal
Cosmmalnd Response
igna . Signal
Object
Car Detected
Figure 5: Level 1 Block Diagram
Module Level 1 RC System Functionality
Inputs - User
- Sensor Input
Outputs - Direction
- Speed
- Distance
Functionality After the user selects a desired path for the vehicle to follow, the track

file is sent through a parsing program, which breaks the track down
into individual movement instructions for the car. These instructions
are transmitted as a command signal to the car, which begins moving.
As the vehicle moves, its position is monitored by the onboard IMU,
which sends the vehicle’s position signal back to the program. If the
collision detection sensor is activated by the vehicle approaching an
unanticipated object, the sensor input is used to alert the vehicle that it
needs to adjust its path. Through the IMU and sensor feedback, the PC
program corrects the path of the vehicle. This corrected path is then
transmitted back to the vehicle, which adjusts its path according to the
new car instructions.

Table 2: Level 1 Functional Requirement Table

13

Qt Basics Br

Qt is an open-source development tool that will be used in conjunction with C++ in order
to accomplish useful tasks that would otherwise be extremely complex or even impossible. There
are numerous libraries that Qt provides, each helping to ease the complexity of certain tasks. In
addition, Qt also provides numerous objects that can either be used to override basic C++ objects,
like a string or vector. Each of Qt’s classes has a name that begins with ‘Q’, such as ‘QString’ or
‘QMap’. This allows a programmer to easily differentiate whether a given object is from base
C++ libraries or from Qt libraries.

Many of Qt’s functionalities are abstract, requiring pointers to base classes instead of
specific objects. This allows users to very easily inherit from base classes while still preserving
the functionality that Qt provides. Throughout the application, numerous objects will inherit
from some of the various Qt base classes, and many of the functions that will be used will be
defined by these base classes.

Qt also provides an application to help with the creation of a dialog or widget. This
program, called QtDesigner, allows the user to simply drag and drop other widgets into the
dialog being created. The end result is a file with extension ‘ui’. This file will then be compiled
along with the other header and source files and turned into a header file of its own, detailing a
‘U’ class that is equivalent to the dialog created in QtDesigner. This header file can be included
in the header file of whatever dialog it was made for, and this dialog’s class will store a ‘UT’
object in order to allow access to the various widgets created in QtDesigner.

The most important use of Qt in this application will be the signals and slots system.
Signals and slots are new types of functions introduced by Qt which, when working together, act
like an interrupt written directly into the C++ code. One of the major uses of this system is the
allowance for a child class to directly talk to the parent class that holds it. When an object needs
to send a signal to any object that receives it, it calls the signals function using the emit keyword.
This will then emit the signal to anything that is listening. When an object listening for this
signal receives it, it will immediately call the slot attached to the signal, no matter what was
happening previously. Signals and slots can be connected to each other using the global connect()
function defined by Qt’s core libraries. In addition, in order for an object to use signals and/or
slots, the ‘Q_OBJECT’ macro must be defined in the class’s definition.

Qt will be directly integrated into every aspect of the application, and will even appear
throughout the pseudo-code. Signals and slots will be primarily used in two areas: the user
interface, in order to connect specific buttons to specific functionalities, and for exchanges
between the communication and track parser components [7].

14

Graphic User Interface sr,1v

The user interface is responsible for obtaining and translating user input in order to create
a usable track. Dialogs are to be created using Qt libraries which will process inputs and update
the display accordingly. The end goal of this component is to create a track file which will be
written in JSON format.

The application’s main window should contain the usual menus in the top left. Below the
menus, there will be toolbars with various shortcuts for convenience. Qt’s main window class
will assist in the creation of these menus and toolbars. The main window will also have a track
view and track piece selector. Figure 6 shows the general design layout of the main window.

Menus I

Toolbars

a

” <= 1] =)

Figure 6: Main Window Design

The track view seen in the middle of Figure 6 displays the track pieces as they are placed.
When a new document is created, a blank view is displayed. In order to add track parts, the user
will click on various pieces in the part selector on the bottom of Figure 6. When hovering over a
piece in the track selector, the track view should show a translucent view of what the piece
would look like if added. Tracks can be saved and loaded, defaulting to the user’s documents
folder. When a previously created track is loaded, the track view will display the track in its
entirety and automatically place the user at the end of the track.

The part selector should also have the capability to allow the user to traverse back though
the track without deleting pieces by using the left and right arrows seen in Figure 6. The ability
to traverse though the track would allow the user to make changes to the middle of the track.
This traversal ability will be implemented in two ways. The arrows in the track selector will

15

navigate through the track one by one. The user should also have the ability to click on a track
piece, automatically selecting it. When adding a track piece, it will append it to whatever the
currently selected piece is. In addition, the track selector will also need a delete function that
would remove the currently selected track.

The background of the track view will be a grid format in specific increments that will
allow the user to better visualize and lay out the track. In addition, this will also help to get a
better grasp of the distance the vehicle will travel. The track view will also need the ability to
zoom in and out, allowing the user to either view more of the track at once or to look at a specific
piece more closely. Additionally, by clicking and dragging on either end of a track piece, the
user should be able to extend or retract that piece, allowing for more customization.

Lastly, this component will also need to be able to create a track file based on the track
currently in the track view. This file will be in JSON format with each track piece being its own
object and containing the track’s specifications. The application should also be able to read
JSON files and populate the track view based on what the file contains. Figure 7 shows a
simplistic example of what a track file may look like.

1

Mame: “"Track Name",

MumPieces: 3,

Pieces: [

{
Angle: @,
Length: 1,
endX: @,
endy: 1

I

{
Angle: o8,
Direction: "RIGHT",
Length: 2,
endx: 2,
endy: 3

s

1
Angle: o8,
Direction: “LEFT",
Length: 1,
endx: 3,
endy: 4

Pl

I

Figure 7: JSON Track File Example

16

Figure 8 shows a level 2 block diagram for this component. Table 3 shows the
functionality requirements for this component.

User Interface Level 2 Block Diagram

Main Window
Toolbar
User Part Tr.aCk Track
> Editor View Track File File
4> . =
Writer
Part Selector
Figure 8: Level 2 User Interface Block Diagram

Module User Interface
Inputs - User
Outputs - Track File
Functionality At the user interface, the user will be allowed to create a customized

track for the vehicle to follow. This track is created by the user
selecting between vast arrays of track pieces found in the part selector.
Once selected, the track pieces are placed in sequential order, creating
the complete track. This track will be shown in the track view window.
Pieces can be edited in the part editor window, where the user can
adjust the length of the piece, as well as the speed of the vehicle. Once
the user is satisfied with the track, the user can send the program to the
vehicle to execute. To do this, the vehicle track is saved as a file, and
the track file is sent to the track parser.

Table 3: User Interface Functional Requirement Table

17

All of the functionality required to implement the user interface can be implemented
through three classes that inherit from various Qt classes. The classes and their interactions can
be seen in Figure 9.

User Interface

MainWindow : Track

——execute()——

QMainWindow Parser

TrackView :
QGraphicsScene

m_currentPiece

next(j Frext{)

NULL

eprev(< & © eprev()|

NULL
Trackltem :
QGraphicsltem
Trackltem
QGraphicslitem
Trackltem :
QGraphicsitem

Figure 9: User Interface Class Diagram

At the bottom of the diagram is the TracklItem class. This class, which inherits from
QGraphicsltem, represents a single track piece in the UL. QGraphicsltems are any object that can
be placed in a QGraphicsScene, allowing for the visualization of movable objects to the user.
Typically, these items are not kept in any order, but in the case of this project, the track pieces
must be kept in a specific order; otherwise, the track pieces will be executed incorrectly. To
maintain the order of the track pieces, each track piece will hold a pointer to both the previous
track piece and the next track piece in the track. These pointers can be accessed through the prev()
and next() functions shown in Figure 9. If the previous and/or next track piece in the track does
not exist, signifying that the current track piece is either the beginning or end of the track, then
these functions will return NULL. Pseudo-code for the TrackItem class can be found in Figures
10 and 11.

18

// Header File
class TrackItem : public QeraphicsItem

i
Q OBIECT
public:
[Constructors/Destructors
TrackItem();
~TrackItem();
/! Getters/setters (if any)
// Access the next track piece in the track
f// If this is the last track piece, this should be NULL
TrackItem* next(};
[/ Access the previocus track piece in the track
/f If this is the first track piece, this should be NULL
TrackItem®* prev{};
// overriding QGraphicsItem::paint()
/f This will be called extremely fregquently, whenever the item
/! needs to be re-paimted.
vold paimt{QPainter®*, const QStyledptiomGraphicsItem®, Quidget#);
cignals:
// signal sent when the track is clicked on
vold clicked();
protected:
/# Overriding QGraphicsItem::mousePressEvent()
/f This will be called whenever the mouse is pressed om this item.
/# Pressing the mouse om a track piece should force the TrackvView to
f/f select that TrackPiece
vold mousePressEvent{QGraphicsSceneMouseEvent®);
private:
// Use the member variables to set the path to be drawn
vold createTrackPath();
{f Member variables
TrackItem* m_nextPiece; f/ The next Track piece in the track
TrackItem* m_prevPiece; // The previous Track piece in the track
int m_angle; // The turn angle of the piece. + for right turns, - for left turns
int m_orientaticn; // The starting orientation of the piece
double m_length; // The length modifier of the track piece. Will be multiplied by the unit length
QPoint m_startPoint; S/ The starting point of the track piece
QPoint m_endPoint; S/ The ending point of the track piece
bool m_isselected; /J/ Holds whether the track piece is currently selected
QPainterPath m_path; // Defines the path that will be drawn to represemt this track plece
I

Figure 10: TrackItem.h Pseudo-code

19

/f Source File
void pailnt(QFainter*, const QstyledpticnGraphicsItem®, QWidget®)
i

if (m_isselected}

{
[/ set the fill ceclor to a brighter form of the stamdard fill color
// set the border to a dotted line instead of a solid one

h

else

{
// Uuse the standard fill and border pens/painters

h

painter-»>fillPath{m_path, fillcColor);
painter-»drawPath{m_path});

h

vaid Track::mousePressEvent(QaraphicsscensMouseEvent®)

i
f# Check whether or not the mouse was clicked in the actual track piece
ff or just in the item's bounding rectamgle.

if (/* it was clicked im the actual track piece */)

{
emit clicked(};

}

/f The actual setting of m_isselected to true will happen in the Trackview

}

vold Track::createTrackPath()

{

ff Find the starting points of the inmer and outer portions of the track
/# Rotate those points according te the orientation

/f For a straight line
if (m_angle == &}
{
J/ Find the end poimts of the inner and outer portioms
// Draw the path, from point to poimt to form a rectamgle

b
f/ For a turn
glse

{
f/ Find the radius of the turn for the inner and ocuter portions
f/ Create squares that encompass both of these arcs
// Draw the lines of the path, including the inner and outer arc

}

!/ set the end peint

Figure 11: Trackltem.cpp Pseudo-code

20

In order to hold all of these Trackltems, as well as allow for simple addition, removal,
and navigation of various track pieces, the TrackView class is necessary. This class inherits from
QGraphicsView and holds a QGraphicsScene as a member variable. By overriding
QGraphicsView, the graphics scene and view are much more customizable to the needs of our
project.

In addition, this custom class is also able to manage the selected track piece. By storing a
pointer to a TrackItem object, the TrackView has easy access to whatever track piece the user is
currently working with, as well as the previous and next track pieces. If any track piece in the
graphics scene is clicked on, it will send a signal to the TrackView. The TrackView will then
shift its currently selected piece to this newly selected piece. This allows the TrackItem object to
be blind to which track piece is currently selected, while TrackView does whatever track
management is necessary.

The last advantage to this TrackView class is the ability to write ease of access functions.
Instead of repeating the same code to add a track piece multiple times in the MainWindow, the
TrackView can instead have simple functions for the addition, removal, or selection of a track
piece. The more specialized each object is, the easier it is to navigate the code and find the cause
of a potential issue. The pseudo-code for the TrackView class can be found in Figures 12 and 13.

// Header File
class TrackView : public Q@raphicsView

1
Q_0BJECT

public:
// Constructors/Destructors
TrackView(QWidget* parent = 8);
~TrackView();

/f Getters/Setters (if any)

/f Add a new track item after the currently selected piece
/f This function must also update the current piece to the newly added piece
vold addPiece(int angle);

// Remove the currently selected piece
vold removePiece();

vold selectPiece(TrackItem®);

slots:
void onPieceClicked(TrackItem®);

private:
// Member Variables
QGraphics5cene m_scene;
TrackItem® m_currentPiece;

b
Figure 12: TrackView.h Pseudo-code

21

// Source File
vold TrackView::addPiece(int angle)

/f Create the Track Piece and set its walues
TrackItem* track = new TrackItem()};
m_scene->addItem(track);
// Set the current piece's next piece's previous piece to the new piece
// Set the current piece's next piece to the new piece
/f Set the new piece's previous piece to the current piece
// Set the new piece’'s next piece to the current piece's next piece
selectPiece(track);
vold TrackView::removePiece()
// Set the current piece's previous piece's next piece to the current piece's next piece
/f Set the current piece's next piece's previocus piece to the current piece’s previcus piece
m_scene->removeltem({m_currentPiece);
selectPiece(/* The current piece's previcus piece */);
vold TrackView::selectPiece(TrackItem* item)
m_currentPiect->deselect();
m_currentPiece = item;
m_currentPiece->select();
// Center the view on the selected piece
vold TrackView::onPieceClicked(TrackItem* item)
selectPiece(item);

Figure 13: TrackView.cpp Pseudo-code

The MainWindow class, which inherits from the QMainWindow class, will not only act
as a controller between the user and the application, but will also act as a controller of the
application as a whole. All of the various buttons and widgets that encompass the dialog will be
placed into this class, and the signals and slots that allow them to interact will be connected
through the MainWindow as well. This dialog will be active at all times, assisting the user with
the creation and execution of a track file. In order to ease the creation of this class, QtDesigner
will be used. Pseudo-code for the MainWindow class can be found in Figures 14 and 15.

22

{// Header File
|class MainWindow : public QMainWindow

1
Q_0BIECT

public:
// Constructors/Destructors
MainWindow(QWidget® parent = 8);
~MainWindow();
{/ @etters/Setters (if any)
slots:
I // 5lots are called when this widget receives a signal
// 811 of these slots are associated with various buttons that the user can click
wvold onSaveClicked();
wvold onSaveAsClicked();
wvold onOpenClicked();
vold onExecuteClicked();
vold onTrackPieceClicked{int angle);
vold onTrashClicked();
private:
I // Save the current contents of the Track View into
// the current file
vold save();
// Read in a Track File and set the Track View's contents
{// to the contents of the file

vold readFile(QString);

// Create a track parser that will execute the current file
vold execute();

// Member variables
Ui mui; // This UI will be created by Qt Designer, and will
// contain all of the necessary widgets.

Qstring m_fileName; // Full path to the opened track file
BE

Figure 14: MainWindow.h Pseudo-code

23

// Source File
void MainWindow: :onSaveClicked()

if (m_fileName == "")
i
onSaveAsClicked();
}
else
i
save();
b
1
vold MainWindow: :onSaveAsClicked()
1
// Prompt the user for a file name/location
m_fileName = // Obtained file path
save();
1
vold MainWindow: :onOpenClicked()
i
// Prompt the user for a file to read in
readFile(/* Obtained file path */};
1

vold MainWindow: :onExecuteClicked()

if (m_fileName == "")
i

onOpenClicked();
}

execute();

1

vold MainWindow::onTrackPieceClicked(int angle)

i
1

m_ui.trackview->addPiece(angle);

void MainWindow: :onTrashClicked()

{

m_ui.trackView->removePiece();

vold MainWindow::save()

1

// Write the file contents to m_fileName
// TODO: Specify
L

vold MainWindow::readFile(Q5tring)

if (/* file can be opened/read */)
1

1

m_fileName = str;

// Read the file contents into m_ui's Trackview
// TODO: Specify

h
vold MainWindow: :execute()
i
TrackParser parser;
parser.parse(m_fileName);
h

Figure 15: MainWindow.cpp Pseudo-code

24

The visualization of an individual track piece in the TrackView requires complex
trigonometric and geometric calculations. Each track piece must be two-dimensional instead of a
simple straight line, meaning that the track piece must have a width, which will cause both an
inner and outer track. In order to draw the curved lines that make up these inner and outer tracks,
numerous potential methods could be used. It was decided to make use of the arcTo() function
defined by the QGraphicsltem base class, which TracklItem inherits from.

This arcTo() function requires information that is not immediately available without
specific calculations. Each track piece stores its own starting position in the TrackView grid, as
well as its turn angle, length, and its starting orientation angle. Figure 16 shows the required
metrics and the usage of the function.

(XL, yr1)

sweepAngle

h

<+ ?2*Radius——»

startAngle

-

snipey,. >

Figure 16: QGraphicsltem::arcTo() Function

The blue line shows what the resulting arc will look like with the given parameters. The
sweep angle is equivalent to the inverse of the turn angle, since right turns are seen as positive in
the case of a Trackltem. In addition, the start angle can be calculated based on the angle of
orientation. In the case of a Trackltem, an orientation of 0° represents the left edge of the circle
in Figure 16, or 180° in the arcTo() system.

Beyond the sweep angle and starting angle, the square that encompasses the circle being
travelled must be given. In order to find this square, the top-left corner and the width of the
square must be found. As Figure 16 suggests, the width of the square will simply be twice the
radius of the circle being travelled, meaning that two parameters must be found: the top-left
corner of the square, and the radius of the circle.

Figure 17 shows how to calculate the radius given the turn angle and length of the track
piece. As the figure suggests, the length of a track piece is based on the maximum distance it
travels above the y-axis, instead of the length of the arc itself.

25

R = length/sin(B)

Figure 17: Radius Calculation

Finally, with the radius calculated, the top left- corner of the square encompassing the
circle can be found.

(xmw, yru)

Figure 18: Top Left Calculation

Using Figure 18, equations can be formed to find the location of the top-left corner.

26

Finally, with all of the pieces in place, the track pieces can be placed into a
QGraphicsScene. Simulations were run to ensure that all of the calculations came out correctly.
The result is a prototype of what the TrackView may look like, shown in Figure 19.

Figure 19: TrackView Simulation

In the figure, the blue line represents the x-axis while the red line is the y-axis. The first
track piece placed is the straight line that starts where these two axes meet. This track piece goes
straight up the y-axis, while the inner and outer lines are a specific distance away from the
track’s line, creating a visible rectangle.

Finally, when the track is saved by the user, each track piece is analyzed in order, and the
necessary data for each piece is stored into the saved JSON format file. This file can then be used
in two locations: reloading the file into the user interface in order to view or edit it, or executing
the track with the Track Parser.

27

Track Parser Br, v, AH, AA

The track parser’s main goal is to take the track file and turn it into instructions that the
microcontroller on the vehicle can interpret. This means that the component will need a method
to parse the file and to turn each track piece into a series of instructions that the microcontroller
on the vehicle can understand. These instructions are to be put into a vector and sent to the data
transmission component.

In order to parse the track file, the component will need to be able to translate the JSON
data into individual track pieces. These track pieces will need to be stored in a vector so that
they remain in the order that they were given. Once the data transmission asks for the next track
piece, the corresponding track piece will be converted to instructions.

The instructions that the converter creates will be specifically formatted and will contain
a series of values that will correspond to voltages that the microcontroller will have to apply to
different pins to run servos and motors, as well as the time that these voltages need to be applied.
Figure 20 shows the level 2 diagram block diagram for the track parser and Table 4 shows the
functional requirements for the component.

Track Parser Level 2 Diagram

Car
Trgck Instructions
File Track File Track _
Parser " Encoder g
Figure 20: Level 2 Track Parser Block Diagram
Module Track Parser
Inputs - Track File
Outputs - Car Instructions
Functionality The track file created by the user on the interface is sent through a

parsing file, which breaks the track down into several smaller
commands. These commands are then encoded as binary messages and
are transmitted to the micro-controller as the car instructions.

Table 4: Track Parser Functional Requirement Table

28

To create the instructions, the converter will use the information given for each track
piece and run a series of equations. The known information about each track piece is the length,
angle, and turn direction. First, the converter will calculate the instructions for the drive train
motor. The radius of the turn angle can be found by using the following equation:

R — L
1 ™7 sin (8)

In this equation, L is the length of the track piece, and 8 is the angle of the track piece. Once the
radius is found, the circumference can be found. The circumference can be found using the
following equation:

C = 2xnxR,
The wheel circumference is also needed and can be calculated using the equation:
WC = 2xnxR,

In this equation, R, is the radius of the car wheel, which is a measurable quantity. Then, the arc
length of the turn can be calculated by using the equation:

a= 2
~ 360"

The wheel circumference is also needed and can be calculated using the equation:
WC = 2xnxR,

After A and WC are calculated, the number of revolutions that the wheel will need to rotate to
achieve the correct arc length can be calculated using the equation:

A
Nyeys = wc

The velocity that the vehicle is to travel will be predetermined in the software. The motor has to
be tested at different voltages so that a graph can be created that relates the voltage to the
revolutions per minute. To find the needed revolutions per minute needed, the following
equation can be used:

Rev = —
ev we

The desired revolutions per minute can then be related to the voltage to find the voltage value
that needs to be applied to the motor. To determine the amount of time this voltage needs to be
applied the following equations can be used:

29

NT‘BUS

1
Rev x 0]

The time value will be in seconds. Also the angle that the turning wheels need to be to make the
desired turn for the track piece needs to be converted to instructions. The turn direction will be
used to tell the servo whether to turn right or left. To calculate the angle of the wheels, the
turning radius needs to be calculated again. The length of the car will also need to be measured.
Once the radius and the length of the car are found, the angle of the wheels can be found using
the equation:

L
— oin—1
0 = sin (R1)

A graph will also need to be created that relates the servo movement to the angle of the turning
wheels. The calculated angle will then be converted into a voltage that will move the servo to the
correct position. After all of these instructions are created, they will be sent to the data
transmission component.

To simulate the creation of track pieces and the way that the car will move with this
information, a script was created in Matlab that allows for the creation of a track by connecting
various points in a graph. An algorithm was created that takes this path as well as a given
velocity, and turns it into the resulting path to be followed by the “RC car”. The Matlab script
and its various functions can be seen in Appendix Figure 1.

The predetermined path is created using two arrays, which hold the x and y points of the
path. The traveling object will move from point to point in sequential order, simulating the RC
car following track pieces. In this simulation, the traveling object must move one instance of the
given velocity before it is given a new direction. After each of these movements, it will then
check to see if it passed the current target point. If it did, it will head toward the next target point.

Figure 21 displays the program simulating a half-circle with the traveling object moving
with a velocity of 1. It is important to note that it will sometimes pass a point entirely before
realizing this and heading for the next. Figure 22 shows the same track when the velocity is
reduced to ¥2. In this simulation, the traveling object moves along the path more accurately
because it has more time to realize that it has passed a target point.

30

Figure 21: Half Circle with Traveling Velocity of 1

Figure 22: Half Circle with Traveling Velocity of 0.5

Figure 23 showcases the ability of the Matlab simulation to head in any direction,
regardless of forward movement. Once again, when the velocity is lowered from 1 as it is in
Figure 23 to Y2 as it is in Figure 24, the traveling object moved along the desired path more
accurately.

31

Figure 23: Jagged Path with Traveling Velocity of 1

Figure 24: Jagged Path with Traveling Velocity of 0.5

32

Data Transmission Br, aa, AH

One of the key aspects of the entire system will be the ability to both transmit and receive
data between both the application and the vehicle’s microcontroller. This will be done using Qt
networking libraries that open a serial stream that allows free communication between terminals.
Several different commands will be encoded and sent. In order to both send and receive these
packets, a transceiver will be connected to the PC using the application. In addition, this
component must be able to decode any messages sent from the RC vehicle itself, and it must
react accordingly.

Bluetooth was chosen due to a variety of factors. Bluetooth operates on the 2400-2483.5
MHz band, which is a regulated band used in a variety of fields. Bluetooth transmits data in
packets of divided input data. A packet is sent on a clock-by-clock basis that allows for packet
acknowledgment. This technique allows for reliable connections in open-air environments. Ease
of use was another factor that led to Bluetooth being chosen. Bluetooth works with a master-
slave relationship. In the case of this project, the computer terminal will act as the master while
the vehicle will act as the slave. Finally, two technical parameters are important in Bluetooth
functionality. Bluetooth works with relatively low power requirements while providing fast data
transfer rates. There are three classes of Bluetooth. Class 2 was chosen for this project as it has
versatile transmission range of 10 meters and moderate power consumption..

The transceiver will also be receiving signals from the vehicle during this time. Some of
these signals will simply be update signals, or “UPD” signals, while some of them will be a
collision detection signal. The network code will have to be able to interpret what kind of
response signal was sent, and whether or not collision avoidance is needed. Figure 25 displays
the Level 2 Block Diagram for this component, and Table 5 shows the corresponding Functional
Requirement Table. Also, a diagram of communication flow is shown below in Figure 26.

33

Commumicaion L evel? Block Disagraam

Car
insinacions
Command
Signal
MNetwork Bluetooth
Code - Transceiver L
rolish Response
Sumal
- Decoder
Figure 25: Level 2 Communication Block Diagram
Module Communication
Inputs - Car Instructions
- Response Signal
Outputs - Collision Signal
- Command Signal
Functionality Once the PC algorithm determines the instructions for the car, the

signal is transmitted through the network code to the Bluetooth
transceiver. The signal received by the Bluetooth transceiver is the
vehicle command signal, which is relayed to the micro-controller. The
vehicle’s response signal, which is the IMU information and the
collision signal, is transmitted through the Bluetooth transceiver to the
network code. This signal is then broken down by the digital decoder,
which gives the feedback collision signal to the PC algorithm.

Table 5: Communication Functional Requirement Table

34

recairdaling dhee i the
pbsiaris pyasE

5 0 ——~Q0 O ——T 0T >
E-
f
a

has besn compleied

Figure 26: Data flow across communication system.

35

—':TCD<

® — O

The vector of encoded track pieces created by the track parser must be sent to the
vehicle’s microcontroller one at a time. The vehicle will process each of these instructions for a
set amount of time—enough to ensure that track piece instructions won’t overlap. This,
combined with request commands from the vehicle, will ensure that the vehicle receives a single
instruction that is up-to-date with the current course correction parameters. To add another
failsafe, the incoming commands will be stored locally on the vehicle. The application located on
the terminal is being written within the QT framework using C++. Below in Figures 27 and 28,
the header and source pseudo-code files are shown displaying the potential plan to develop the
communications code. Qt's built-in libraries will be referenced to create code with the necessary
functionality.

JSSfSummary: This class will set create a Bluetcooth object

/S and open a window to connect to the wehicle.
Once the PC and terminal are paired, the Bluetooth
cbject will allow the application and the wehicle to
to commanicate via a serial connection.

#ifndef BLUETOOTH H
#define BLUETOOTH H

//Header files.
#include <{BluetoothlocalDevice:
#include «<{BluetoothDeviceInfo>

class Bluetooth : public Q0bject

{
Q_OBJECT

public:

//Constructor.
Bluetooth() »

J/Deatructor.
~Bluetooth() ;

//5etters/Getters if any.

//Detects other area Bluetocoth devices.
vold detectDevieces() :

//5ets up connection between PC and wehicle.
vold setupConnection() ;

f/5ends message to vehicle.
wvold sendMessage (Qstring message)

//Retrieve message from storage.
QString retrieveMessage () ;

private:
/fCreates a local device.
RBlustoothlocalDeviece localDewvice:

f/f5tores name of local device name
RString localDevice:
//Sets up server to listen for incoming messages from wehicle.

QBluetocothServer connection;
//S5tores received messages for processing.
QString messages[]:

Figure 27: Pseudo-code header file for Qt Bluetooth communication

36

//Header files.

#Finclude «<{BluetocothlLocallevice>
#include <{BluetocothDevicelnfo>
Bluetooth: :Bluetooth ()

{ f/Check if Bluetocoth is awvailable.
f/Turn Bluetooth on.
f/Read and store local Bluetooth dewvice name.
S /Make the Bluetocoth device wiaible to the wvehicle.
ff5tore the connected devices.
}
Bluetocoth: :~Bluetocoth()
{
f/5end closing me3sage.
//Close connections.
S fDelete local wariables.
}

vold detectDevices()

{
FS/Find all dewvices that connected to it during initialization.
f/5tore information about detected, connected devices.

}

wvold setupConnecticon()

{
f/Create a local server to handle local message I1I0.
S /Create S5IGNAL/SLOT system to detect new incoming messages and. ..
f/execute the appropriate response.

}

wold sendMessage (Qstring message)

{
f/5end message to wvehicle.

}

Q5tring retrieveMessage ()

{

J//Returns next message from FIFD gqueue.
return message:;

Figure 28: Pseudo-code source file for Qt Bluetooth communication

37

RC Vehicle aa,an

In order to accomplish the goal of following a user-created track, a vehicle needs to be
created that can receive the parsed track data and convert that into the physical movement of the
vehicle. For this application, an RC car was chosen as the best option of vehicle. An RC car is
an inexpensive, low-power option for a vehicle that can be easily tested out in an indoor
laboratory setting. The RC vehicle that was used in this experiment was a simple childhood toy
of one of the members of the design team. After stripping the remote control components off the
car, the only electronics that remained intact were the 3.3V DC motor that drove the rear wheels,
and the rotational servo motor that turned the front wheels. The Level 2 Block diagram and
functional requirement table for the vehicle are shown below in Figure 29 and Table 6.

Power Motor Shield
Source Power Source
Car Level 2 Block Diagram
Command
Signal
9 > GPS A
7 y
Micro-Controller - Mqtor
Bluetooth . Shield
Transceiver Response
i Signal
Collision
Sensor y
Output Car
Body
Iy Iy
Servo Motor
] Y

Figure 29: Car Level 2 Block Diagram

38

Module RC Car

Inputs - Command Signal

- Object Detected

- Power Source

- Motor Shield Power Source

Outputs - Response Signal

Functionality The power source and the motor shield power source supply the power
necessary to operate the micro-controller and the motor shield. The
command signal input communicates a binary-coded message from the
PC to the micro-controller, which distributes the necessary voltages to
the servo and motor through the motor shield to control the speed and
direction of the car. An object detection signal is relayed to the micro-
controller from the collision sensor. This detection signal and the GPS
location are sent back to the PC as the response signal. The response
signal is broken down and analyzed by the PC algorithm, and is
returned to the car as the command signal.

Table 6: Car Functional Requirement Table

Once the car was stripped of the old electronics, the new electronics were added onto the
vehicle. The foundation of the new vehicle is the microcontroller. The microcontroller acts as
an intersection between input and output signals and the required response. The vehicle will use
an Arduino Mega 2560 microcontroller. This microcontroller was chosen for this application
because it has 54 digital IO pins, 16 analog 10 pins, 256k of memory, and runs off a 16 MHz
clock. This board has more than enough IO pins to run all the onboard electronics, has sufficient
memory for programming, and meets the low power requirements desired by the engineering
requirements. The microcontroller layout is diagramed in Figure 30. Also, the wiring pinout
required by the onboard embedded components can be found as Figure 31. These pin
requirements will be explained later.

39

{0 3 e :':__E—F_.w[:[]-—“-...
ey | —iT = R

|

22 HEAA ©

]

1

an

i

A

A

e

A

B e [PO L]
smr <o, fF]
A4 Pl BT
LR a5

A A o
T Fre

[* a0
AL A -

Figure 30: Microcontroller Layout

40

o, [—8
.

".'."E* .m.mmi—*ﬁ
HH

[T

A e NS

ISP Pinsut

PEZ . e NEST

ATHEGH EIUSBED 105

[, TREE T
P RO e

. e
I P
I
Samdal Fie
N Analoy Fio
! Garetrnl
AT
sl e
s B
o flectian
| SvieemEt Pin
==Y P
O Fl.-r"n-

[ey gy oL

_a“uu L nrﬁ:‘_ﬂ-

2

L
LY CcagE

HX
i]
(=
o m
»
-
=

Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jlumped to Motor Controller
Jlumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller

Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller

Jumped to Motor Controller Jumped to Motor Controller

Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
lumped to Motor Controller
Jumped to Motor Controller

Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller
Jumped to Motor Controller

D0
ONINA¥y

Tesrarersenennnsnenad

RX from GPS
TX from GPS
SDA from IMU
SCLfromIMU

L R N N T R T T

Figure 31: Arduino Mega 2560 Microcontroller Pinout

This microcontroller will be coupled with a motor shield, namely the Adafruit Motor
Shield V2. The motor shield is a specialized full-bridge driver that steps up the input voltage and
current to match the needs of the DC motors driving the vehicle. The motor shield takes input
signals from the microcontroller and provides the correct gain to properly drive the motor. The
signals to drive the motors would be determined by the PC and sent to the microcontroller. This
information would include encoded instructions that the microcontroller would pass on as
voltage signals to the motors. The pin requirements for the Motor Shield can be found on Figure
32. These pin requirements will also be explained later.

41

Motor Neutral
MotornputVoltage

P P ¥
i) 0) |" . Servo GND
rmdA, Ervo ower{EV{

Servo PWM Inpu

5VDC Regulated Motor Voltage

Front Middle U.S. Trigger

Right U.S. Trigger

Bluetooth Reset
HERo0 ese .5, Trigger

Ground Common w/ Solder board #1

Front Left U.5. Analog Feedback
Front Middle U.5. Analog Feedback
Front Right U.5. Analog Feedback

Bluetooth Rx
Bluetooth Tx

Figure 32: Adafruit Motor Controller Pinout

One of the most significant functions of the RC vehicle is wireless communication.
Communication for between the vehicle microcontroller and the PC was determined to be over
the Bluetooth frequency band. Using a Bluetooth transceiver, the RC vehicle would send motor
and servo commands to the vehicle, and report sensor information to the PC with the
microcontroller acting as a middleman. The pinout for the Bluetooth communication device can
be found below as Figure 33.

Reset-to Reset £3
H O DTR
1uF
Fx - to Tx 01
RX
Tx-to Rx 00 O ™
+E5YDC
VIN
Q DSR
GHO
GMND

Figure 33 — Bluetooth Pinout Diagram

42

Along with the microcontroller, motor shield, and Bluetooth transceiver, there are several
more pieces of embedded hardware that are used on the vehicle. An important portion of the
embedded hardware is the inertial measurement unit (IMU). The inertial measurement unit
chosen for this project has an onboard gyroscope, accelerometer, and compass. Using a filter,
which will be explained in greater detail in the Collision Detection/Avoidance section, an
accurate location can be determined in real-time to determine variation from the given track. This
location is based on the acceleration and velocity determined by the accelerometer and the
direction determined by the compass. If this occurs, algorithms would execute that compute a
corrective movement for the vehicle. If the vehicle strays from the track, this information will be
used to determine how to return to the desired path. The pinout for the IMU device can be found
below as Figure 34.

+5VDC
VIN

3VO

GMDO GND

SCL-ta Pin 20
- SCL
SDA-ta Pin 21

SDA

GINT

GRD

LIN1

LIN2

00000 OOOOD

LRD

Figure 34 — Internal Measurement Unit Pinout Diagram

43

Another sensor that could be used to determine vehicle state would be a GPS module.
The module would be used to track the current location of the vehicle. Initially, the GPS unit
was intended to be used to track the actual position of the vehicle as it moved along the track.
However, the unit was not able to provide precise enough positional feedback, so the IMU was
used in its place for that purpose. The GPS was left connected to the vehicle circuit for future
applications. The GPS device pinout can be found below as Figure 35.

3.3V

EN

VBAT
FIX
Ri-to Pin 19
Ti-fo Pin™1g
- | Rx
GMNDO
GMD
+5VDC

VIN

PPS

OO0OOOOO00O0

Figure 35 — GPS Pinout Diagram

In order to provide enough power to supply the motors, servos, and embedded hardware,
great care was taken into the choice of power supply for this project. Initially, the vehicle was
designed to run off of a 9 VDC batteries as the power supply. This power supply has been
chosen because it is powerful enough to supply enough power to operate all of the onboard
electronics as well as power the motors and motor drives. To calculate the maximum power
required by the onboard electronics, the maximum current draws for each component were found
by looking at the datasheets associated with the respective components. The power requirements
for each component, as well as the overall amp draw and power draw for the onboard
components are compiled in Table 7. Using a typical 9VDC alkaline battery, the minimum
runtime of the vehicle from the battery can be determined from assuming the maximum amp
draw is constantly used by the vehicle. With the average 9V alkaline battery being 600 mA-hrs,
the vehicle would have a minimum runtime of 2.92 hours. This is also shown in Table 8.

44

Power Calculations for RC Car
Component Max Power Draw (mW) | Max Amp Draw (mA) | Operating Voltage (V)
Ultrasonic Range Detectors 30 (10mW each) 6 (2mA each) 5
GPS 220 44 5
Servo 250 50 5
Bluetooth 125 25 5
Relative Positioning 30 3] 3
625 125

Table 7: Power Calculations Table

Battery Runtime (mA/h)| Max Amp Draw (mA)| Total Runtime (hrs)
600 125 4.8

Table 8: Vehicle Runtime Calculation Table for 9VDC Alkaline Battery

However, the one factor that is not included in these measurements is the current being
drawn by the motor. This current draw varies not only with the velocity and acceleration
required of the motor, but the current draw also increases as the input reference voltage for the
motor shield rectifier varies. As the alkaline battery was used more over a period of time, the
voltage provided by the battery would decrease due to the motor load. As less of a voltage was
sourced, more current was required by the motor to move the vehicle. With this being factored
in, the alkaline battery was only getting about 30 minutes of use out of each battery before there
was not enough power available by the battery to drive the motor. With less power available to
the motor, the vehicle was moving much slower than normal, and was unable to travel the
desired lengths and angles that were desired. By having a more constant, regulated voltage as
the motor shield reference, the motor would have a much more consistent voltage to reference
for the motor output, meaning more consistent, repeatable results.

To solve this, one 12 VDC Nickle-Metal Hydride rechargeable battery and one 7.5 VDC
Nickle-Metal Hydride battery were used in place of the 9 VDC alkaline batteries. The 7.5 VDC
battery was connected only to the Arduino Mega microcontroller. By having this component on
a separate power source, there is less noise that is seen in the other embedded components and
the microcontroller can operate independently of these components. The 12 VDC NiMH battery
is used as the source for the onboard embedded components, namely the ultrasonic range
detectors, Bluetooth device, IMU device, and GPS device and motor shield. The NiMH has
2000 mAH of stored power amounts to 16 hours of use, which compared to the alkaline battery,
proves that it is the better choice. These calculations are found in Table 9.

Battery Runtime (mA/h)| Max Amp Draw (mA)| Total Runtime (hrs)
2000 125 16

Table 9: Vehicle Runtime Calculation Table for 12 VDC NiMH Battery

45

All these components operate off a 5 VDC input. To step the 12 VDC down to 5 VDC, a
voltage regulating circuit will be introduced. This regulation will be accomplished by
introducing the voltage regulation circuit shown in Figure 36. This circuit utilizes the LM7805
voltage regulator that regulates input voltage from a range of 5-18 VDC to a nominal output
voltage of 5 VDC. Two capacitors, one at the input (10 uF) and one at the output (1 uF), will be
added in parallel to clean up any variance or ripple in the signal.

' LM7E805 +*

| 1
— 12V 1 10uF cz L 1uF +5DC Output Solurce

|||_4p

Figure 36: 12 VDC to 5 VDC Voltage Regulator Circuit

The 5 VDC output from this circuit acts as the input source for the IMU, GPS, and
Bluetooth devices as shown below in Figure 37. Figure 37 also shows the input and output wires
from each device that will be connected back to the microcontroller. The circuit connected in
Figure 34 was constructed on a solder board and was mounted onto the vehicle.

VDG Sourt
* LM7E05 +5VDC Scurce

v J_—_12V m'l 10uF ”:.Z'll'uF
.T T T Giound Réference
L
Bluetooth
e O GPS. Device
S) Device :]
O GHND Q b]
o O CoedOod
o &)
'S IMU &
Device aho

O O 3T 1WwF
O O +5VDC’
O O

g i Q z 2 i

Figure 37: Solder Board #1 Circuit Design

46

As shown above in Figure 37, each device used only requires certain inputs and outputs
to accomplish the tasks that are required for this application. The IMU uses only the SCL (serial
clock) and SDA (serial data) pins to communicate accelerometer, gyroscope, and compass data
back to the Arduino controller. The serial data is transmitted every time the serial clock pin is
pulsed, which is a parameter that can be set by the user. The GPS device communicates the
relative position of the vehicle through the Rx and Tx pins. Transmissions (Tx) from the GPS
are received by the microcontroller (Rx). The opposite is true for transmissions from the
microcontroller to the GPS. The communication pins used on the microcontroller for the GPS
data transfer are Digital I/O pins 18 and 19, respectively. The same communication scheme of
transmitting and receiving data is true for the Bluetooth device. This communication path is
chosen between Digital I/O pins 0 and 1. Also, a reset function is required by the Bluetooth for
testing purposes. This Reset pin is connected through a 1 uF shunt capacitor to the Reset pin
found on the motor shield.

Below in Figure 38 a picture of the completed RC vehicle is shown. The electronics
were mounted on a board made from fiberglass. Fiberglass is a non-conductive material, so it
serves as a good medium with which to mount the devices. Brackets were also made to mount
the ultrasonic range detectors onto the front of the car. The use for these devices will be
explained later in the report. The vehicle, as designed, meets both the size and weight
requirements that were outlined in the engineering requirements for the project.

Figure 38: Photographs of vehicle used in project application (top and side view)

47

The microcontroller is controlled by embedded C code compiled in the open-source
environment. This code will be programmed to gather sensor data, control the motors, and
communicate with the terminal. A portion of the code will be functionality referenced from
open-source libraries while the rest will be developed as a custom solution for this project. Many
of the libraries were from Adafruit repositories. Ada fruit manufactured many of the components
used for the project, and their libraries were used for simple interfacing between devices. The
custom solution will function out of a header file that encapsulates all functions needed for the
vehicle to operate.

Arduino code is broken into two, fundamental sections. Before these sections are entered,
all functions to be used are defined in a header file. The specialized header file has functionality
for course correction, obstacle detection, and code decoding among others. A sample of pseudo-
code for the header file is shown below in Figure 39.

//Project.h file.

//Defines project related functions for use throughout the loop() block in Main.c.

//Required header files:

/Cpen-source libraries.

<TinyGPS.h>

<L5M303.h>

<hAdafruit_ MotorShield.h>

"util Adafruit_ PWMServoDriver.h"
rduino libraries.

clude <Wire.h>

include <SoftwareSerial.h>

include <Servo.h>

kool checkCoordinates(double lat, double)

i
hecks the difference between current location and where the wehicle is supposed to be.
//Returns true if coordinates are within a prgser error threshold.
}

vold correctCourse ()

/fRuns course correction algorithm.

}

double filterCoordinate (doukle coord)
i
//Filters noise from GPS coordinates.

}

double decodeCommand(string command)
i
//Takes string from command and decodes the required speed, time, and angle.

¥

double receiwvelat()

{

f/Receives latitude coordinate from GP5 module.
1
double receiwveLon()
{

[/ fReceives longitude coordinate from GP5S module.
}

int checkProximity ()

i

hecks ggnger voltages to determine proximity.

eturns code if a wvehicle is too close in one direction.
}

Figure 39: Pseudo-code header file of the embedded code

48

The first, fundamental section of Arduino code is setup(). Before setup() is entered, all
global variables used in the code are defined. Once these declarations are complete, control
moves to the setup() block. In setup(), previously defined declarations are initialized. As shown
in the pseudo-code below, the Arduino is commanded to enable serial data transmission. Also, a
local Bluetooth connection is set up using a third-party module so that the vehicle and
application terminal can communicate. Following Bluetooth initialization, the ultrasonic sensors
are configured to the proper pins. Lastly, the motor shield is initialized. The motor shield
communicates with the microcontroller using 12C in a serial format. Below, a simplified
flowchart shows the general process of the setup() block in Figure 40. Then, in Figure 41 and
Figure 42, pseudo-code for everything up to and including the setup() block is shown.

49

Power On

Declare global
variables

Create Serial
Connection

'

Create and Test
Bluetooth
Connection

Successful
Connection?

Declare Ulkrasonic
Sensor Pins

l

Create Motor Shieldl
Object and Attach
Motors'Servos

Move to Loop

Figure 40: Flowchart of Arduino code setup

50

[/Open—-source headers.

#include <TinyEFS.h>

#include <LSM303.h>

#include <Adafruit MotorShield.h>

#include "utility/idafruit PWMServoDriver.h™

S/hrduine headers.
#include «<Wire.h>
#include «<SoftwareSerial.h>
#include <Servo.h>

f/Custom header.
#include "Project.h™

f/Bluetooth wariables.

SoftwareSerial bluetocothipin, pin): //Bx, Tx
char bluetcothData:

int bkaudRateBT:

f/Serial wariable.
int kaudBate:

/ /Motor variabkles.

int defaultSpeed:

S /Speed from user PC command.
int speed;

//Motor run time.

int time:

f/Servo turn angle.

int angle;

S /GES object declaration.
f/GEFS bootup time <40s.
GBS gpa:

//Motorshield declaration.

Bdafruit Motorshield motorShield = Adafruit MotorShield()
//Motor declaration.

Adafruit_ DCMotor *motorl motorShield.getMotor (1)
Bdafruit DCMotor *motor? = motorShield.getMotor (2) ;

[/ Servo declaration.

Servo servol:

Servo 3servol:;

vold setup ()

"

Figure 41: Variable Declaration Pseudo-code for the Arduino

51

vold setup()
{
J/5erial library setup.

Serial.begin(baudRate) ;

//Bluetooth connecticon setup.
bluetocoth.begin (baudRateBT) :
bluetooth.printIn("Initialization message..."):

//Ultrasonic sensor declaration.

[/ /Bepeat for each indiwidual sensocr.
pinMode (trigPin, OUTEFUT) ;

pinMode (echoPin, INPUT):

J/Motorshield declaration.
motorShield.begin():
servol.attach (pind) ;
servod.attach (pinB) ;
motorl->setSpeed (defaultSpeed) ;
motor2-»setSpeed (defaultSpeed) ;

Figure 42: Setup() block of the Arduino code

After the setup() block is completed, control moves to the loop() block of the code. The
loop() block of Arduino code is where all action takes place. As can be surmised by the name,
the loop() block is an infinite loop. When compiled and uploaded to the microcontroller, the code
will run indefinitely unless a pre-programmed stimulus causes the code to break out of the loop.
For this action, several actions take place every time the loop is completed. First, data is read
from the Bluetooth serial stream. This data will include the newly requested command that will
be run during the current loop cycle. This command will then be checked for errors prior to the
car following its instructions. This prevents damage to the vehicle’s mechanical componenets.
Second, the next command to be followed will be run prior to execution. The command will be
dissected to recover pertinent information for the microcontroller's servo and motors. This
information includes, angle, time, and voltage. Before executing the next command, the third
step in the loop() block will check the proximity readings of the ultrasonic sensors. If an obstacle
is near, the motors will be sent an evasive maneuver command. An algorithm will then be
completed to find the best route to return to the correct path while avoiding the obstacle. If no
obstacle is detected, the fourth step is to run the command. While the movement is being
completed, the IMU data stream will be check to determine the vehicle's location. The inertial
measurement unit's sensor data will first be filtered to remove excess noise from the signal. Once
the acceleration and angular velocity values are ready, the information will be sent to the

52

terminal for course correction. The information received by the application terminal from the
inertial measurement unit is then used to determine the accuracy of the vehicle's position relative
to the desired location. If a discrepancy is detected, the final action of the loop() block is to
calculate a corrective path that will return the vehicle to the proper path. In the figures below, a
flowchart outlines the actions taken in the loop() block, and pseudo-code outlines the potential
code that will be developed.

53

Setup

The Heeeve Comsmesl
bl i the fast shep of the

el

Receive Command

eralwevkiey] boop owle

5

Check Proximity

Object Detected ?

Begin Movement

Confirm heading .

Update Coordinates

I

Update Coordinates

Make Evasive
Maneuver

Figure 43: Flowchart of the loop

54

void loop ()
{
f/Local variables:
int i = 0:
J/Flag for new coordinates.
bool gpsDataFlag = false:
bool location = false;
J/GP5 storage wvariables.
double lat:
double lon:
double newLlat:
doukle newLlon:
J/5peed from user PC command.
int speed;
S /Motor run time.
int time;
J/Servo turn angle.
int angle:
f/S3ensor flag.
int sensorFlag = 0:

Figure 44: Local loop() variables

55

S/Receive command via Bluetooth connection.
if (klustocoth.availakle (j)

{
//Bead and parse bluetcothData.
bluetoothData=bluetooth.read() ;
//Decode command.
decodeCommand (blueToothData) »
sensorFlag = checkProximity () :
ff
if (senscrFlag)
{
S /Perform evasive mManeuver.
1
else if (senscrFlag)
{
S /Perform evasive maneuver.
}
J/Bun new command.
for{i=time; i'=0; time--)
{
J/5et motor/servo values for proper movement.
gervol.write(map{i, 0, 235, 0, angle)):
gervold. . .Weite(map{i, 0, 255, 0, angle)):
motorl->»setSpeed (apeed) »
motorl-»setSpeed (speed)
1
f/Besult if new data arriwved.
if {(gpsDataFlag)
{
receivelat() :
receivelon() !
//5tore new coordinates.
lat = filterfoordinate (lat) ;
lon = filterCoordinates(lon):
S /Check location.
location = checkCoordinates(lat, lon, newlat, newlon):
if{locaticn !'= true)
{
S /Moves wvehicle to expected locaticon.
correctCourse () ;
}
1
}

Figure 45: Embedded loop() code

56

Collision Detection / Avoidance Br, v, Aa

The collision detection and avoidance component is unique in that half of it takes place in
the RC vehicle’s hardware while the other half takes place in the application’s software. The
detection half requires that a proximity sensor on the vehicle is able to detect any objects
obstructing its path. Meanwhile, the collision avoidance half of this component must use an
algorithm to avoid that obstruction.

The proximity sensor must have a long enough range to allow the vehicle to both
acknowledge the obstruction, send a collision PDU to the application, and receive a response
generated by the collision avoidance algorithm. In order to properly sense any obstructions, the
sensor must be mounted as far in the front of the car as possible. It may also need some
proximity sensors on each side to help the algorithm determine which way to go to avoid the
obstruction.

The collision algorithm must take in the information provided by these proximity sensors,
as well as the vehicle’s current and target locations in order to help the vehicle avoid the
obstruction and get back onto the desired path. This means that it will have to create new
instructions for the vehicle to follow and send them through data transmission. It is also possible
that the obstruction is in the way of one or more of the vehicle’s target locations. If this is the
case, the algorithm must recognize this and skip these locations, preferring to move forward
instead. Figure 46 contains this component’s block diagram, and Table 10 contains its
corresponding Functional Requirement Table.

Collision Detection/Avoidance Level 2 Block Diagram

In Software In Car
Collision
Signal % Object
Detected
Command CO!I'S'On Proximity
Signal Avoidance Sensor
- 9 Algorithm

Figure 46: Level 2 Collision Detection / Avoidance Block Diagram

57

Module Collision Detection/Avoidance

Inputs - Collision Signal
Outputs - Command Signal
- Object Detected
Functionality Once the proximity sensor on the car senses a nearby object, an object

detection signal is sent from the car to the PC software. The incoming
collision signal is then processed by the collision avoidance algorithm,
which determines the path correction for the vehicle to avoid the
object. The corrected path is then sent as the command signal from the
software back to the micro-controller on the car.

Table 10: Collision Detection / Avoidance Functional Requirement Table

Another component of the microcontroller feedback to the system is the error tracking of
the position of the vehicle. In order to verify that the vehicle has traveled along the desired path,
real-time data needs to be fed back to the microcontroller in order to determine its actual position
compared to its desired position. To do this, an onboard inertial measurement unit (IMU) is
going to be used. This IMU has 6 degrees of freedom, meaning that the accelerometer
component of the IMU has 3 degrees of freedom and the gyroscope component has 3 degrees of
freedom. Using these components, the IMU will be able to sense what direction the vehicle is
turning, and how fast the vehicle is turning. With this data fed back to the microcontroller, the
position of the vehicle can be tracked through incorporating a complementary filter. A
complementary filter, in its most basic sense, utilizes a combination of a high pass filter, a low
pass filter, and numeric integration to determine more accurate angle and angular velocity
measurements than can be found through direct measurements from the IMU. The sensor data
collected by the IMU has a tendency to be noisy and can vary greatly from what the actual value
is. The complementary filter eliminates this noise and will give a more accurate description of
the actual position of the vehicle by focusing on calculating a better angle measurement for the
direction of the path of the vehicle. The complementary filter uses the following equation to
accomplish this:

0 = 0.98(angle + gyroData x dt) + 0.02(accData)

The angle for the current time interval, 0, is not simply taken from the gyroscope data,
rather it is the integration of the gyroscope data added to the angle of the previous time step.
This is then added with the accelerometer data, which is used as an angle measurement using the
arctangent function. These two quantities are multiplied by scalar constants, whose sum equals
one. The past angle and gyroscope integrated sum is weighted much more than the
accelerometer angle, as seen in the equation above. This weighting ensures that the
measurement values will not drift in the long term, and the measurements will be very accurate
in the short term.

This type of filter utilizes 3 main mathematical functions in order to filter out the
unwanted noise: integration, a low-pass filter, and a high-pass filter. The integration that is used
takes a summation of the angular rotation of the vehicle over one time interval through

58

integrating the angular velocity measurement from the accelerometer with respect to time. This
gives the change in angular position since the last sampling instance. This is then added to the
angular position of the last sampling instance, which results in an approximation of the angular
position of the vehicle for the current sampling instance. This results in having incorporated the
equivalent of a low-pass filter to the data. It is filtering out short-term fluctuations in the
vehicle’s angular position, and only allowing long term changes to be experienced. Any change
in position is going to be incremental instead of instantaneous. The small scalar constant
multiplied with the accelerometer angle also acts as a low-pass filter by only allowing that
quantity to have a small impact on the current angle. The larger scalar constant multiplied with
the gyroscope integration and previous angle acts as a high-pass filter. Acting in the opposite
manner of the low-pass scalar constant, it allows for those quantities to have a larger impact on
the current angle than the accelerometer angle and prevents the measurements of the vehicle’s
path to drift over time. The high-pass filter and the low-pass filter operate on the same time
scaling, so they are being sampled at the exact same frequency.

Through comparing the desired vehicle position with the position measured by the
complementary filter, the positional error of the vehicle can quickly be calculated. The error will
be used to adjust the next movement command to bring the vehicle back to the desired position.

For the purpose of collision detection, three ultrasonic range detectors were attached to
the front of the vehicle. By having one face straight ahead, one at a 45 degree angle to the right,
and one at a 45 degree angle to the left, a full view of any object that may encounter the vehicle
can be seen. Through chaining these sensors together and using analog voltage feedback, the
vehicle is able to measure the distance an object is from the front of the vehicle, ranging between
3 and 72 inches from the front of the car. The circuit for the interconnection of the ultrasonic
sensors can be found below as Figure 47.

- Frontleft -~ .- | FrontMiddle -~ - |- | FrontRight -
- ‘Ultrasonic Sensor -~ | - | Ultrasonic Sensor -~ | - |- Ultrasonic Sensor-
%ff%ffrﬁ::é:::‘ff%ffs:: 55%’55%535;@-;55555;;;; S :f%‘;ff%:;ﬁ::ézzgff?fs::
QOO O Qoo | OO O

Figure 47: Proximity Sensor Circuit Diagram

59

Parts List .

Uss: Part: Fart Mumber Description: ‘Wendor Link: Price: Quantity:
The Arduing board
with the AT Mega
2560 microcontroller
requires an input
voltages of T-12W.
The board has 54
digital |0 pins and
18 analog 10 pins.
The microcontrolier
a5 250k of
Atmel 258D {Arduino ATMEGAZES]- memory and runs at https: /e s parkfun.
Microcontroller | Mega 2560) i8AU 1GMhz clock speed. | SparkFun comypreducts! 11081 45.95
The ultrasonic
sensor nesds 3
voltage of &V to
operate. The sensor
can detect object
HC-5R04 Distance within 3 range of
SensorUitrzsonic Rangs Zom to 4mowith 3
Ultra=sonic Finder — L\-MaxSonar- messuring angle of https:/iwarn. sparkfun.
Range Detector| EZ4 HC-5R04 15 degrees. SparkFun comyproducts/ 8504 327.895
The dual gearbos
setup contains two
independent
Mabuchi mators.
They have an
operating voltage of
1.5-2.0% and 0.2-
Tamiya 70158 Double 2.204A. The motors
Gearbox LR Independ 4- hawe 3 maximum https: /e s parkfun.
Maitor Spesd {Mabuchi Motor) | FA-130RA speed of ~§700mpm. | SparkFun comyproducts/319 310.50
Sarvo - Generic High
Targue Full Rotation https: /e s parkfun.

Servo [Standard Size) SparkFun comyproducts/ 5347 $12.895
http:/iwww . radicshack
coom-Ew-foead-

Voltage +EW Fioed-Voltags waoltsge-regulator-

Regulator Regulstor 705 TEDE[-=Ev RadioShac TE0EZTE1TT0. himl .59

Blusfruit EZ-Link -
Blustooth Serial Link &
Arduing Programmer - https:/iwarm. adafruit.c
Blustooth w13 1588 | 10m range. Adafruit om/product/ 1588 322.50
Adafruit 10-00F (MU Gyro,
Relstive Breskout - L3GDZ0H + scoelerometer, https:/iwarm. adafruit.c
Positioning LSM303 + BMP180 1804 | compass Adafruit om/products/ 1604 £20.98
Adafruit
Maotor/Stepper/Servo
Shigld for Arduino w2 it - Can drive 2 motors http:/iearw. adafruit. co

Maotor Controller| w2.3 1438 [and 2 servos. Adafnit muproducts/ 1438 §15.85
http:/Tararw. amazon. oo
mygp/product/BI0408

12V Tenergy 2000mah X4l iref=ph_suwi_dsts
Rechargesble | MiMH Battery Pack with Rechargeable ilpage_o01_s0Tie=U
Batteny Barz Leads batterny. Amazon TFE&psc=1 32387

Figure 48: Parts List

60

Design Team Information sk rv, am as

Alex Aubihl - Electrical Engineer - Hardware Manager
Andrew Hopwood - Computer Engineer - Project Leader
Benjamin Riggs - Computer Engineer - Software Manager

Tyler Vance - Computer Engineer - Archivist

61

Conclusion i

The focus of the free-range pre-programmed car is to develop a system that can realize a
user input in the form of motion. In order to accomplish this, the project will be broken into
several components. First, input will be gathered and processed as a user inputs the desired track.
Once the track has been processed, the information will be sent across a wireless connection to
the radio-controlled vehicle. The vehicle will then execute the desired track. If an obstacle is
detected, an interrupt will be sent through the vehicle's microcontroller to the computer for a new
route to be determined.

After over a year of planning, designing, implementing, and testing our vehicle
application, the project can be considered a success. The vehicle is able to use parsed data
commands created by a user through the PC interface and autonomously manuever the vehicle
about the desired track path. The vehicle is also able to measure the current position of the
vehicle and compare that to the desired position from the algorithm. This difference is calculated
as the positional error, and the vehicle corrects for this error in the next track piece sent by the
user. The vehicle is able to incoroporate sensors on the front of the vehicle and avoid running
into potential obstacles by braking the motors within a range of potential contact. All things
being considered, this project was a success.

62

References v,

[1] IEEE standard 802.15.1-2005, Wireless medium access control (MAC) and physical layer
(PHY) specifications for low-rate wireless personal area networks (WPANs). 2005. Institute
of Electrical and Electronics Engineers, 802.15.1-2005.

[2] Fengchuan, Zhang. 2013. Remote control toy device. China filed 2013.

[3] Krichmar, Jeffrey, and Oros, Nicholas. Android based robotics: Powerful, flexible and
inexpensive robots for hobbyists, educators, students and researchers. 2013 [cited March 14
2014]. Available from http://www.socsci.uci.edu/~jkrichma/ABR/index.html.

[4] Oriana, Riva, and Jaakko Kangasharju. 2008. Challenges and lessons in developing
middleware on smart phones. IEEE Computer Society (October): 23-31.

[5] Osthege, Michael. 2013. Arduino as a MIDI/Bluetooth relay for Windows 8.1 apps MSDN.
[6] Tze Man Ho, Patrick. 2002. RC car device. United States filed 2002.

[7] Qt Project Hosting. 2014. Documentation available from http://qt-project.org/

63

Appendices BR, TV, AH, AA

Referenced Datasheets:

WiFi Module: http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Wireless/WiFi/WiFly-RN-XV-
DS.pdf

Bluetooth Module: http://m2.img.dxcdn.com/CDDriver/sku.121326.pdf

Microcontroller: http://arduino.cc/en/Main/ArduinoBoardMega2560

Ultrasonic Range Detector: http://users.ece.utexas.edu/~valvano/Datasheets/HCSR04b.pdf

Infrared Range Detector:
http://www.acroname.com/products/Sharp GP2D120 DATA SHEET.pdf

Motor Controller: http://arduino.cc/en/Main/ArduinoMotorShieldR3

Motor:
http://www.robotgear.com.au/Cache/Files/Files/136_Mabuchi%20motor%?20fa 130ra%?20datash

eet.pdf
GPS: http://cdn.sparkfun.com/datasheets/GPS/EM506_um.pdf

Servo: http://www.servocity.com/html/hs-5055mg_servo.html#.VDyKQ nF HU

64

Matlab Simulation Code:

% position of the car [x,y]
% velocity of the car [v_x,v_y]

% Target points obtained based on the predetermined path
[x_p,y_pl=Path_d(1,10,10);

T=100;

index = 1;
x=zeros(1,100);
y=zeros(1,100);
v_x=zeros(1,100);
v_y=zeros(1,100);
max_turn = (pi/6);

x(1)=0;
y(1)=0;
v_x(1)=1/sqrt(2);
v_y(D)=1/sqrt(2);

for t=1:T7T-1
if t==1
index = index + 1;

else
if (x(t-1)
(x(t-D

x_p(index) && x(t) >
x_p(index) && x(t) <= x_p(index)) ||
Cy(t-1 < y_p(index) && y(t) >= y_p(index)) ||
C y(t-1 > y_p(index) && y(t) <= y_p(index))
index = index + 1;

x_p(index)) ||

<
>
<
>

end
end

if index > Tength(x_p)

break;
end
X_t = x_p(index);
y_t = y_p(index);

%destination velocity
[vx_t,vy_t]=ajdust_v(x_t,y_t,x(t),y(t),v_x(t),v_y(t) ,max_turn);
X (t+1)=x(t)+vx_t;
y(t+D)=y () +vy_t;
v_x(t+1)=vx_t;
v_y (t+1l)=vy_t;

end

x_final=zeros(1,t);

65

y_final=zeros(1,t);

for i=1:t
x_final(i) = x(i);
y_final(i) = y(i);
end

plot(x_final,y_final,'-k"')

hold on
plot(x_p,y_p,'-r")

function[vx_t,vy_t]=ajdust_v(x_t,y_t,X,y,V_X,V_y,angle)

dx=x_t-x;

dy=y_t-y;

r=sqrt(dxA2+dyA2) /sqrt(V_xA2+v_yA2);
vX_t=dx/r;

vy_t=dy/r;

end

%predefined path
function[x_p,y_pl=Path_d(S,K,E)

% S is the predetermined shape of the path
% K is the steps we would Tlike to focus on
% E is the horizontal Tength we predefine

%x_p = 0:(E/K):E;

%if S==1

% y_p=sqrt(25-(x_p-5).A2);
%end

X_p = zeros(1,6);
y_p = zeros(1,6);
x_p(1) = 0;
y_p(1) = 0;
x_p(2) = 1;
y_p(2) = 3;
x_p(3) = -5;
y_p(3) = 5;
x_p(4) = -5;
y_p(4) = 8;
x_p(5) = -3;
y_p(5) = -2;
X_p(6) = 4;
y_p(6) = -7;

end

66

function[x_t,y_t,index]=Target_d(x_p,y_p,X,Y,t,index)

if t==1
index = index + 1;
x_t = x_p(index);
y_t = y_p(index);
else
if (x(t-1)<x_p(index) && x(t) >= x_p(index)) |]...
(x(t-D>x_pCindex) && x(t) <= x_p(index)) |]...
(y(t-D<y_pCindex) && y(t) >= y_p(index)) |]...
(y(t-D>y_pCindex) && y(t) <= y_p(index))
index = index + 1;
end
x_t = x_p(index);
y_t y_p(index);
x_p(index)
end

Appendix Figure 1: Matlab Simulation Code

67

	The University of Akron
	IdeaExchange@UAkron
	Spring 2015

	Free-Range Pre-Programmed RC Car
	Alexander L. Aubihl
	Andrew S. Hopwood
	Benjamin J. Riggs
	Tyler P. Vance
	Recommended Citation

	Microsoft Word - 437706-convertdoc.input.425483.R_NoN.docx

