248 research outputs found
Detection of vascular morphology by high frequency intravascular ultrasonic imaging
This study was designed to validate the potential clinical utility of intravascular ultrasonic imaging in vitro and in vivo. In vitro studies were performed to assess the accuracy of dimensional and morphological information. In vitro images of human vessels (n = 75) demonstrated that lesion thickness determined echographically closely related with histological samples (r = 0.83). Morphologically, muscular and elastic arteries could be distinguished echographically based on the echogenicity of the arterial media. Close relation was also found in the morphological subtypes of atherosclerosis. Subsequently, intravascular ultrasound was used percutaneously in vivo in 20 patients to obtain images of the iliac and superficial femoral artery. High quality real-time images were obtained. Normal vessels were seen showing pulsatile circular images with a hypoechoic muscular media resulting in a typical three-layered appearance. Diseased arteries revealed non-obstructive and obstructive lumen. At the site of obstruction thinning of the muscular media was evident. Pulsation was not always present. Following dilatation of the obstructive lesion using balloon angioplasty the ultrasonic cross-sections changed drastically revealing plaque rupture, dissection, plaque-free wall rupture, rest stenosis and oedema. We conclude that intravascular ultrasonic imaging is a promising technique to document accurate dimensional and morphological characteristics of human vascular disease for guidance of therapeutic interventions
Three-dimensional reconstruction of intracoronary ultrasound images. Rationale, approaches, problems, and directions
Although intracoronary ultrasonography allows detailed tomographic imaging of the arterial wall, it fails to provide data on the structural architecture and longitudinal extent of arterial disease. This information is essential for decision making during therapeutic interventions. Three-dimensional reconstruction techniques offer visualization of the complex longitudinal architecture of atherosclerotic plaques in composite display. Progress in computer hardware and software technology have shortened the reconstruction process and reduced operator interaction considerably, generating three-dimensional images with delineation of mural anatomy and pathology. The indications for intravascular ultrasonography will grow as the technique offers the uni
Validation of quantitative analysis of intravascular ultrasound images
This study investigated the accuracy and reproducibility of a computer-aided method for quantification of intravascular ultrasound. The computer analysis system was developed on an IBM compatible PC/AT equipped with a framegrabber. The quantitative assessment of lumen area, lesion area and percent area obstruction was performed by tracing the boundaries of the free lumen and original lumen. Accuracy of the analysis system was tested in a phantom study. Echographic measurements of lumen and lesion area derived from 16 arterial specimens were compared with data obtained by histology. The differences in lesion area measurements between histology and ultrasound were minimal (mean ± SD: -0.27±1.79 mm2, p>0.05). Lumen area measurements from histology were significantly smaller than those with ultrasound due to mechanical deformation of histologic specimens (-5.38±5.09 mm2, p0.05). Finally, intra- and interobserver variability of our quantitative method was evaluated in measurements of 100 in vivo ultrasound images. The results showed that variations in lumen area measurements were low (5%) whereas variations in lesion area and percent area obstruction were relatively high (13%, 10%, respectively). Results of this study indicate that our quantitative method provides accurate and reproducible measurements of lumen and lesion area. Thus, intravascular ultrasound can be used for clinical investigation, including assessment of vascular stenosis and evaluation of therapeutic intervention
On the error term in Weyl's law for the Heisenberg manifolds (II)
In this paper we study the mean square of the error term in the Weyl's law of
an irrational -dimensional Heisenberg manifold . An asymptotic formula
is established
Биофизика зрительной сенсорной системы человека
Зрительная сенсорная система – это система, которая воспринимает излучение видимого спектра, после чего формируется изображение предметов окружающей среды в виде определенных ощущений
(сенсорных чувств)
Quality assessment of randomized controlled trial abstracts on drug therapy of periodontal disease from the abstracts published in dental Science Citation Indexed journals in the last ten years
Randomized controlled trials (RCTs) provide the highest level of evidence and are likely to influence clinical decision-making. This study evaluated the reporting quality of RCT abstracts on drug therapy of periodontal disease and assessed the associated factors. The Pubmed database was searched for periodontal RCTs published in Science Citation Indexed (SCI) dental journals from 2010/01/01 to 2019/07/17. Information was extracted from the abstracts according to a modified Consolidated Standards of Reporting Trials (CONSORT) guideline checklist. The data was analyzed using descriptive statistical analysis and the statistical associations were examined using the linear regression analysis (P <0.05). This study retrieved 1715 articles and 249 of them were finally included. The average overall CONSORT score was 15.6 ± 3.4, which represented 40.9% (±0.6) of CONSORT criteria filling. The reporting rate of some items (trial design, numbers analyzed, confidence intervals, intention-to-treat analysis or per-protocol analysis, harms, registration) was less than 30%. The adequate reporting rate of some items (participants, randomization, numbers analyzed, confidence intervals, intention-to-treat analysis or per protocol analysis) was no more than 4%. None of the abstracts reported funding. According to the multivariable linear regression results, number of authors (P=0.030), word count (P <0.001), continent (P=0.003), structured format (P <0.001), type of periodontal disease (P <0.001) and international collaboration (P=0.023) have a significant association with reporting quality. The quality of RCT abstracts on drug therapy of periodontal disease in SCI dental journals remained suboptimal. More efforts should be made to improve RCT abstracts reporting quality
The SysteMHC Atlas project.
Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts
Identification and characterization of microRNAs expressed in the African malaria vector Anopheles funestus life stages using high throughput sequencing
Background: Over the past several years, thousands of microRNAs (miRNAs) have been identified in the genomes of various insects through cloning and sequencing or even by computational prediction. However, the number of miRNAs identified in anopheline species is low and little is known about their role. The mosquito Anopheles funestus is one of the dominant malaria vectors in Africa, which infects and kills millions of people every year. Therefore, small RNA molecules isolated from the four life stages (eggs, larvae, pupae and unfed adult females) of An. funestus were sequenced using next generation sequencing technology. Results: High throughput sequencing of four replicates in combination with computational analysis identified 107 mature miRNA sequences expressed in the An. funestus mosquito. These include 20 novel miRNAs without sequence identity in any organism and eight miRNAs not previously reported in the Anopheles genus but are known in non-anopheles mosquitoes. Finally, the changes in the expression of miRNAs during the mosquito development were determined and the analysis showed that many miRNAs have stage-specific expression, and are co-transcribed and co-regulated during development. Conclusions: This study presents the first direct experimental evidence of miRNAs in An. funestus and the first profiling study of miRNA associated with the maturation in this mosquito. Overall, the results indicate that miRNAs play important roles during the growth and development. Silencing such molecules in a specific life stage could decrease the vector population and therefore interrupt malaria transmission.IS
Influence of particle parameters on deposition onto healthy and damaged human hair
Objective: This research investigates how particle parameters, such as zeta potential, size, functional group, material composition, and hydrophobicity affect their affinity and deposition of particles onto hair. Methods: Streaming potential was used as the technique for analysis. The streaming potential data obtained was then converted to surface coverage data. Scanning electron microscopy (SEM) was also done to visualize particle localization on the hair surface. Results: This study found stronger particle affinity on healthy than on damaged (oxidatively bleached) hair, due to diminished interaction sites from the removal of the hair shaft's external lipid layer. SEM imaging supported these findings and offered insights into particle localization. Hydrophilic silica particles accumulated along the exposed hydrophilic cuticle edges of healthy hair, due to hydrogen bonding with the exposed endocuticle. This localization is hypothesized to be due to the limited hydrophilic binding sites on the hydrophobic healthy hair cuticle surface. In damaged hair, an abundance of hydrophilic sites across the cuticle surface results in more dispersed binding. Hydrogen bonding and electrostatic attraction were shown to be the predominant forces influencing deposition, with hydrophobic interactions playing a less influential role. The affinity studies also proved that electrostatic attractions work over a longer range and are more effective at lower particle conditions compared with hydrogen bonding which only start to play a bigger role at higher particle concentrations. Steric hindrance of bulky side groups acted as a significant repulsive force. Results also revealed that larger particles deposit poorly on both healthy and damaged hair compared with smaller ones. Compared with neutrally charged silica nanoparticles (SN-2), positively charged PMMA particles (PN+16) have a stronger affinity to healthy hair, with highly charged particles (PN+49) depositing most rapidly. Conclusion: This study provides a fundamental understanding of how particle–surface parameters influence their affinity to hair and how damaging hair affects deposition.</p
- …
