3,945 research outputs found
Incidence of debris discs around FGK stars in the solar neighbourhood
Debris discs are a consequence of the planet formation process and constitute
the fingerprints of planetesimal systems. Their solar system's counterparts are
the asteroid and Edgeworth-Kuiper belts. The aim of this paper is to provide
robust numbers for the incidence of debris discs around FGK stars in the solar
neighbourhood. The full sample of 177 FGK stars with d<20 pc proposed for the
DUNES survey is presented. Herschel/PACS observations at 100 and 160 micron
complemented with data at 70 micron, and at 250, 350 and 500 micron SPIRE
photometry, were obtained. The 123 objects observed by the DUNES collaboration
were presented in a previous paper. The remaining 54 stars, shared with the
DEBRIS consortium and observed by them, and the combined full sample are
studied in this paper. The incidence of debris discs per spectral type is
analysed and put into context together with other parameters of the sample,
like metallicity, rotation and activity, and age.
The subsample of 105 stars with d<15 pc containing 23 F, 33 G and 49 K stars,
is complete for F stars, almost complete for G stars and contains a substantial
number of K stars to draw solid conclusions on objects of this spectral type.
The incidence rates of debris discs per spectral type 0.26 (6 objects with
excesses out of 23 F stars), 0.21 (7 out of 33 G stars) and 0.20 (10 out of 49
K stars), the fraction for all three spectral types together being 0.22 (23 out
of 105 stars). Uncertainties corresponding to a 95% confidence level are given
in the text for all these numbers. The medians of the upper limits of
L_dust/L_* for each spectral type are 7.8E-7 (F), 1.4E-6 (G) and 2.2E-6 (K);
the lowest values being around 4.0E-7. The incidence of debris discs is similar
for active (young) and inactive (old) stars. The fractional luminosity tends to
drop with increasing age, as expected from collisional erosion of the debris
belts.Comment: 31 pages, 15 figures, 10 tables, 2 appendice
Searching for transits in the Wide Field Camera Transit Survey with difference-imaging light curves
The Wide Field Camera Transit Survey is a pioneer program aiming at for searching extra-solar planets in the near-infrared. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. We produce an alternative set of light curves using the difference-imaging method for the most complete field in the survey and carry out a quantitative comparison between the photometric precision achieved with both methods. The results show that differencephotometry light curves present an important improvement for stars with J > 16. We report an implementation on the box-fitting transit detection algorithm, which performs a trapezoid-fit to the folded light curve, providing more accurate results than the boxfitting model. We describe and optimize a set of selection criteria to search for transit candidates, including the V-shape parameter calculated by our detection algorithm. The optimized selection criteria are applied to the aperture photometry and difference-imaging light curves, resulting in the automatic detection of the best 200 transit candidates from a sample of ~475 000 sources. We carry out a detailed analysis in the 18 best detections and classify them as transiting planet and eclipsing binary candidates. We present one planet candidate orbiting a late G-type star. No planet candidate around M-stars has been found, confirming the null detection hypothesis and upper limits on the occurrence rate of short-period giant planets around M-dwarfs presented in a prior study. We extend the search for transiting planets to stars with J ≤ 18, which enables us to set a stricter upper limit of 1.1%. Furthermore, we present the detection of five faint extremely-short period eclipsing binaries and three M-dwarf/M-dwarf binary candidates. The detections demonstrate the benefits of using the difference-imaging light curves, especially when going to fainter magnitudes.Peer reviewe
Four ultra-short period eclipsing M-dwarf binaries in the WFCAM Transit Survey
We report on the discovery of four ultra-short period (P<0.18 days) eclipsing
M-dwarf binaries in the WFCAM Transit Survey. Their orbital periods are
significantly shorter than of any other known main-sequence binary system, and
are all significantly below the sharp period cut-off at P~0.22 days as seen in
binaries of earlier type stars. The shortest-period binary consists of two M4
type stars in a P=0.112 day orbit. The binaries are discovered as part of an
extensive search for short-period eclipsing systems in over 260,000 stellar
lightcurves, including over 10,000 M-dwarfs down to J=18 mag, yielding 25
binaries with P<0.23 days. In a popular paradigm, the evolution of short period
binaries of cool main-sequence stars is driven by loss of angular momentum
through magnetised winds. In this scheme, the observed P~0.22 day period
cut-off is explained as being due to timescales that are too long for
lower-mass binaries to decay into tighter orbits. Our discovery of low-mass
binaries with significantly shorter orbits implies that either these timescales
have been overestimated for M-dwarfs, e.g. due to a higher effective magnetic
activity, or that the mechanism for forming these tight M-dwarf binaries is
different from that of earlier type main-sequence stars.Comment: 22 pages, 17 figures, 3 tables Accepted for publication in MNRA
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
- …
