21 research outputs found

    Immune Responses to Plague Infection in Wild Rattus rattus, in Madagascar: A Role in Foci Persistence?

    Get PDF
    Plague is endemic within the central highlands of Madagascar, where its main reservoir is the black rat, Rattus rattus. Typically this species is considered susceptible to plague, rapidly dying after infection inducing the spread of infected fleas and, therefore, dissemination of the disease to humans. However, persistence of transmission foci in the same area from year to year, supposes mechanisms of maintenance among which rat immune responses could play a major role. Immunity against plague and subsequent rat survival could play an important role in the stabilization of the foci. In this study, we aimed to investigate serological responses to plague in wild black rats from endemic areas of Madagascar. In addition, we evaluate the use of a recently developed rapid serological diagnostic test to investigate the immune response of potential reservoir hosts in plague foci.We experimentally infected wild rats with Yersinia pestis to investigate short and long-term antibody responses. Anti-F1 IgM and IgG were detected to evaluate this antibody response. High levels of anti-F1 IgM and IgG were found in rats one and three weeks respectively after challenge, with responses greatly differing between villages. Plateau in anti-F1 IgM and IgG responses were reached for as few as 500 and 1500 colony forming units (cfu) inoculated respectively. More than 10% of rats were able to maintain anti-F1 responses for more than one year. This anti-F1 response was conveniently followed using dipsticks.Inoculation of very few bacteria is sufficient to induce high immune response in wild rats, allowing their survival after infection. A great heterogeneity of rat immune responses was found within and between villages which could heavily impact on plague epidemiology. In addition, results indicate that, in the field, anti-F1 dipsticks are efficient to investigate plague outbreaks several months after transmission

    Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia:

    Get PDF
    Objective: The pathogenesis and the outcome of Pseudomonas aeruginosa ventilator-acquired pneumonia depend on the virulence factors displayed by the bacteria as well as the host response. Thus, quorum sensing, lipopolysaccharide, and type 3 secretion system have each individually been shown to be important virulence systems in laboratory reference strains. However, the relative contribution of these three factors to the in vivo pathogenicity of clinically relevant strains has never been studied. We analyzed the virulence of 56 nonclonal Pseudomonas aeruginosa strains isolated from critically ill patients with ventilator-acquired pneumonia. To avoid the variation of human immune response, we used a murine model of pneumonia. The aim was to determine which virulence factor was the most important.Setting: Research laboratory of a university. Subjects: Male adult BALB/c mice. Interventions: In vitro, the phenotype of each strain was established as to the expression of quorum sensing-regulated factors (elastase and pyocyanin), type 3 secretion system exotoxin secretion (Exotoxin U, S and/or T, or “nonsecreting”), and lipopolysaccharide O-antigen serotype. Strain pathogenicity was evaluated in vivo in a mouse model of acute pneumonia through lung injury assessment by measuring alveolar–capillary barrier permeability to proteins, lung wet/dry weight ratio, and bacterial dissemination. Associations were then sought between virulence system phenotypes and levels of lung injury. Measurements and Main Results: In univariate analysis, elastase production, O11 serotype, and type 3 secretion system exotoxin secretion were associated with increased lung injury and exotoxin U was linked to an increase risk of bacteremia. In multivariate analysis, we observed that type 3 secretion system exotoxin secretion and to a lesser degree elastase production were associated with increased lung injury. Conclusion: In a murine model of pneumonia, our data suggest that type 3 secretion system and elastase are the most important virulence factors in clinically relevant P. aeruginosa strains

    Modified Needle-Tip PcrV Proteins Reveal Distinct Phenotypes Relevant to the Control of Type III Secretion and Intoxication by Pseudomonas aeruginosa

    Get PDF
    The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication

    Immunization with Recombinant V10 Protects Cynomolgus Macaques from Lethal Pneumonic Plague▿

    No full text
    Vaccine and therapeutic strategies that prevent infections with Yersinia pestis have been sought for over a century. Immunization with live attenuated (nonpigmented) strains and immunization with subunit vaccines containing recombinant low-calcium-response V antigen (rLcrV) and recombinant F1 (rF1) antigens are considered effective in animal models. Current antiplague subunit vaccines in development for utilization in humans contain both antigens, either as equal concentrations of the two components (rF1 plus rLcrV) or as a fusion protein (rF1-rLcrV). Here, we show that immunization with either purified rLcrV (a protein at the tip of type III needles) or a variant of this protein, recombinant V10 (rV10) (lacking amino acid residues 271 to 300), alone or in combination with rF1, prevented pneumonic lesions and disease pathogenesis. In addition, passive immunization studies showed that specific antibodies of macaques immunized with rLcrV, rV10, or rF1, either alone or in combination, conferred protection against bubonic plague challenge in mice. Finally, we found that when we compared the reactivities of anti-rLcrV and anti-rV10 immune sera from cynomolgus macaques, BALB/c mice, and brown Norway rats with LcrV-derived peptides, rV10, but not rLcrV immune sera, lacked antibodies recognizing linear LcrV oligopeptides

    Biodegradation in a Partially Saturated Sand Matrix: Compounding Effects of Water Content, Bacterial Spatial Distribution, and Motility

    No full text
    International audienceBacterial pesticide degraders are generally heterogeneously distributed in soils, leaving soil volumes devoid of degradation potential. This is expected to have an impact on degradation rates because the degradation of pollutant molecules in such zones will be contingent either on degraders colonizing these zones or on pollutant mass transfer to neighboring zones containing degraders. In a model system, we quantified the role exerted by water on mineralization rate in the context of a heterogeneously distributed degradation potential. Alginate beads colonized by Pseudomonas putida KT2440 were inserted at prescribed locations in sand microcosms so that the initial spatial distribution of the mineralization potential was controlled. The mineralization rate was strongly affected by the matric potential (decreasing rate with decreasing matric potential) and by the initial distribution of the degraders (more aggregated distributions being associated with lower rates). The mineralization was diffusion-limited, as confirmed with a mathematical model. In wet conditions, extensive cell dispersal was observed for the flagellated wild type and, albeit to a lesser extent, for a nonflagellated mutant, partially relieving the diffusion limitation. Dry conditions, however, sustained low mineralization rates through the combined effects of low pollutant diffusivity and limited degrader dispersal

    Molecular Basis of Immunity to Rickettsial Infection Conferred through Outer Membrane Protein B ▿ †

    No full text
    Pathogenic rickettsiae are the causative agents of Rocky Mountain spotted fever, typhus, and other human diseases with high mortality and an important impact on society. Although survivors of rickettsial infections are considered immune to disease, the molecular basis of this immunity or the identification of protective antigens that enable vaccine development was hitherto not known. By exploring the molecular pathogenesis of Rickettsia conorii, the agent of Mediterranean spotted fever, we report here that the autotransporter protein, rickettsial outer membrane protein B (rOmpB), constitutes a protective antigen for this group of pathogens. A recombinant, purified rOmpB passenger domain fragment comprised of amino acids 36 to 1334 is sufficient to elicit humoral immune responses that protect animals against lethal disease. Protective immunity requires folded antigen and production of antibodies that recognize conformational epitopes on the rickettsial surface. Monoclonal antibodies (MAbs) 5C7.27 and 5C7.31, which specifically recognize a conformation present in the folded, intact rOmpB passenger domain, are sufficient to confer immunity in vivo. Analyses in vitro indicate this protection involves a mechanism of complement-mediated killing in mammalian blood, a means of rickettsial clearance that has not been previously described. Considering the evolutionary conservation of rOmpB and its crucial contribution to bacterial invasion of host cells, we propose that rOmpB antibody-mediated killing confers immunity to rickettsial infection
    corecore