127 research outputs found

    Determining the Spectral Signature of Spatial Coherent Structures

    Full text link
    We applied to an open flow a proper orthogonal decomposition (pod) technique, on 2D snapshots of the instantaneous velocity field, to reveal the spatial coherent structures responsible of the self-sustained oscillations observed in the spectral distribution of time series. We applied the technique to 2D planes out of 3D direct numerical simulations on an open cavity flow. The process can easily be implemented on usual personal computers, and might bring deep insights on the relation between spatial events and temporal signature in (both numerical or experimental) open flows.Comment: 4 page

    Airborne sun photometer PLASMA: concept, measurements, comparison of aerosol extinction vertical profile with lidar

    Get PDF
    A 15-channel airborne sun-tracking photometer has been developed. The instrument provides aerosol optical depths over a wide spectral range (0.34–2.25 μm) with an accuracy (ΔAOD) of approximately 0.01. Taking measurements at different altitudes allow us to derive the aerosol extinction vertical profile. Thanks to the wide spectral range of the instrument, information on the aerosol size distribution along the vertical is also available

    Study on the influence of different error sources on sky radiance measurements and inversion-derived aerosol products in the frame of AERONET

    Get PDF
    Comunicación presentada en: 2012 European Aerosol Conference (EAC-2012), B-WG01S2P30, celebrada del 2 al 7 de septiembre de 2012 en Granada.Financial support from the Spanish MICINN under projects with ref. CGL2009-09740, CGL2011-23413, CGL2010-09480-E and CGL2011-13085-E is gratefully acknowledged

    PHOTONS/AERONET sunphotometer network overview. Description – Activities - Results

    Get PDF
    Fourteenth International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics celebrado del 24 al 30 de junio de 2007 en Buryatia, Russia

    The AERONET-Europe calibration facility: access within the ACTRIS project

    Get PDF
    Comunicación presentada en: 2012 European Aerosol Conference (EAC-2012), B-WG01S2P30, celebrada del 2 al 7 de septiembre de 2012 en Granada.This work has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement N. 262254. Financial support from the Spanish Ministry of Science (MICINN) under projects with ref. CGL2009-09740, CGL2011-23413, CGL2010-09480-E and CGL2011-13085-E as well as from Junta de Castilla y León are gratefully acknowledged

    Pointing error and field of view of AERONET CIMEL-318 sun photometers

    Get PDF
    Resumen de la comunicación oral presentada en: 1st Iberian Meeting on Aerosol Science and Technology – RICTA 2013, celebrado del 1 al 3 de julio de 2013 en Évora, Portugal

    An algorithm to retrieve ice water content profiles in cirrus clouds from the synergy of ground-based lidar and thermal infrared radiometer measurements

    Get PDF
    The algorithm presented in this paper was developed to retrieve ice water content (IWC) profiles in cirrus clouds. It is based on optimal estimation theory and combines ground-based visible lidar and thermal infrared (TIR) radiometer measurements in a common retrieval framework in order to retrieve profiles of IWC together with a correction factor for the backscatter intensity of cirrus cloud particles. As a first step, we introduce a method to retrieve extinction and IWC profiles in cirrus clouds from the lidar measurements alone and demonstrate the shortcomings of this approach due to the backscatter-to-extinction ambiguity. As a second step, we show that TIR radiances constrain the backscattering of the ice crystals at the visible lidar wavelength by constraining the ice water path (IWP) and hence the IWC, which is linked to the optical properties of the ice crystals via a realistic bulk ice microphysical model. The scattering phase function obtained from the microphysical model is flat around the backscatter direction (i.e., there is no backscatter peak). We show that using this flat backscattering phase function to define the backscatter-to-extinction ratio of the ice crystals in the retrievals with the lidar-only algorithm results in an overestimation of the IWC, which is inconsistent with the TIR radiometer measurements. Hence, a synergy algorithm was developed that combines the attenuated backscatter profiles measured by the lidar and the measurements of TIR radiances in a common optimal estimation framework to retrieve the IWC profile together with a correction factor for the phase function of the bulk ice crystals in the backscattering direction. We show that this approach yields consistent lidar and TIR results. The resulting lidar ratios for cirrus clouds are found to be consistent with previous independent studies.</p

    Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    Get PDF
    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150Mm(-1) within the dust plume. Non-negligible aerosol extinction (about 50Mm(-1)) has also been observed within the marine boundary layer (MBL). By combining the ATR- 42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6–7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 μm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 μm, has been detected above the MBL. In terms of shortwave (SW) direct forcing, in situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the aerosol direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to (-90)Wm(-2) at noon). Aircraft observations provide also original estimates of the vertical structure of SW and LW radiative heating revealing significant instantaneous values of about 5 K per day in the solar spectrum (for a solar angle of 30 ) within the dust layer. Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about -10 to -20Wm(-2) (for the whole period) over the Mediterranean Sea together with maxima (-50Wm(-2)) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa. Finally, a multiyear simulation, performed for the 2003 to 2009 period and including an ocean–atmosphere (O–A) coupling, underlines the impact of the aerosol direct radiative forcing on the sea surface temperature, O–A fluxes and the hydrological cycle over the Mediterranean.French National Research Agency (ANR) ANR-11-BS56-0006ADEMEFrench Atomic Energy CommissionCNRS-INSU and Meteo-France through the multidisciplinary programme MISTRALS (Mediterranean Integrated Studies aT Regional And Local Scales)CORSiCA project - Collectivite Territoriale de Corse through Fonds Europeen de Developpement Regional of the European Operational ProgramContrat de Plan Etat-RegionEuropean Union's Horizon 2020 research and innovation program 654169Spanish Ministry of Economy and Competitivity TEC2012-34575Science and Innovation UNPC10-4E-442European Union (EU)Department of Economy and Knowledge of the Catalan Autonomous Government SGR 583Andalusian Regional Government P12-RNM-2409Spanish Government CGL2013-45410-R 26225

    Interiorized Feminism and Gendered Nostalgia of The ‘Daughter Generation’ in Ning Ying's Perpetual Motion

    Get PDF
    This is the author's accepted manuscript. The original publication is available at http://dx.doi.org/10.1386/jcc.5.3.253_1Ning Ying’s 2006 film Wuqiong dong/Perpetual Motion can be regarded as her first attempt to explore the genre of ‘women’s film’. Deviating from her previous neo-realist style, this film seeks to cultivate an alternative cinematic practice through developing a heavy-handed negative aesthetics. Ning Ying interiorizes the filmic exploration of female subjectivity in an enclosed time and space, which is constantly haunted by a spectral aesthetics characterized by audio-visual allusions to loss, grave, ruins and ghosts. However, the film’s radical content and alternative aesthetics are, ironically, packaged in prevailing consumer aesthetics and commodity fetishism on and off the silver screen. All these competing drives and accounts render the film a contested narrative constantly oscillating between avant-garde feminism and domestic melodrama, and between a register of disintegrating sisterhood and a celebrity scandal of adultery. This article examines the discursive and aesthetic innovations, contradictions and limits of Ning Ying’s cinematic feminism
    corecore