42 research outputs found

    Permutation Entropy and Signal Energy Increase the Accuracy of Neuropathic Change Detection in Needle EMG

    Get PDF
    Background and Objective. Needle electromyography can be used to detect the number of changes and morphological changes in motor unit potentials of patients with axonal neuropathy. General mathematical methods of pattern recognition and signal analysis were applied to recognize neuropathic changes. This study validates the possibility of extending and refining turns-amplitude analysis using permutation entropy and signal energy. Methods. In this study, we examined needle electromyography in 40 neuropathic individuals and 40 controls. The number of turns, amplitude between turns, signal energy, and “permutation entropy” were used as features for support vector machine classification. Results. The obtained results proved the superior classification performance of the combinations of all of the above-mentioned features compared to the combinations of fewer features. The lowest accuracy from the tested combinations of features had peak-ratio analysis. Conclusion. Using the combination of permutation entropy with signal energy, number of turns and mean amplitude in SVM classification can be used to refine the diagnosis of polyneuropathies examined by needle electromyography

    A Phase 2 Randomized Controlled Trial of the Efficacy and Safety of Cannabidivarin as Add-on Therapy in Participants with Inadequately Controlled Focal Seizures

    Get PDF
    OBJECTIVE: We assessed the efficacy, safety, and tolerability of cannabidivarin (CBDV) as add-on therapy in adults with inadequately controlled focal seizures. MATERIALS AND METHODS: One hundred and sixty-two participants (CBDV n=81; placebo n=81) were enrolled. After a 4-week baseline, participants titrated from 400 to 800 mg CBDV twice daily (b.i.d.) (or placebo) over 2 weeks, followed by 6 weeks stable dosing (at 800 mg b.i.d.) and a 12-day taper period. The primary endpoint was the change from baseline in focal seizure frequency during the 8-week treatment period. Secondary endpoints included additional efficacy measures relating to seizures, physician- and participant-reported outcomes, change in the use of rescue medication, cognitive assessments, and safety. RESULTS: Median baseline focal seizure frequencies were 17–18 per 28 days in both groups, and similar reductions in frequency were observed in the CBDV (40.5%) and placebo (37.7%) groups during the treatment period (treatment ratio [% reduction] CBDV/placebo: 0.95 [4.6]; confidence interval: 0.78–1.17 [−16.7 to 21.9]; p=0.648). There were no differences between the CBDV and placebo groups for any seizure subtype. There were no significant treatment differences between CBDV and placebo groups for any of the secondary efficacy outcome measures. Overall, 59 (72.8%) of participants in the CBDV group and 39 (48.1%) in the placebo group had ≥1 treatment-emergent adverse event (AE); the 3 most common were diarrhea, nausea, and somnolence. The incidence of serious AEs was low (3.7% in the CBDV group vs. 1.2% in the placebo group). There was little or no effect of CBDV on vital signs, physical examination, or electrocardiogram findings. Elevations in serum transaminases (alanine aminotransferase or aspartate aminotransferase) to levels >3×upper limit of normal occurred in three participants taking CBDV (two discontinued as a result) and one taking placebo; however, none met the criteria for potential Hy's Law cases. CONCLUSION: It is likely the 40.5% seizure reduction with CBDV represents an appropriate pharmacological response in this population with focal seizures. The placebo response was, however, high, which may reflect the participants' expectations of CBDV, and a treatment difference from placebo was not observed. CBDV was generally well tolerated

    Linear and Nonlinear EEG Synchronization in Alzheimer’s Disease

    No full text
    As is known, Alzheimer’s disease (AD) is associated with cognitive deficits due to significant neuronal loss. Reduced connectivity might be manifested as changes in the synchronization of electrical activity of collaborating parts of the brain. We used wavelet coherence to estimate linear/nonlinear synchronization between EEG samples recorded from different leads. Mutual information was applied to the complex wavelet coefficients in wavelet scales to estimate nonlinear synchronization. Synchronization rates for a group of 110 patients with moderate AD (MMSE score 10 to 19) and a group of 110 healthy control subjects were compared. The most significant decrease in mutual information in AD patients was observed on the third scale in the fronto-temporal area and for wavelet coherence within the same areas as for mutual information; these areas are preferentially affected by atrophy in AD. The new method used utilizes mutual information in wavelet scales and demonstrates larger discriminatory values in AD compared to wavelet coherence.Як відомо, хвороба Альцгеймера (ХА) пов’язана з прогресуючим когнітивним дефіцитом у результаті істотної загибелі нейронів. Зменшення міжнейронних зв’язків може проявлятись як зміни ступеню синхронізації електричної активності взаємодіючих мозкових структур. Ми використовували методику оцінки вейвлет-когерентності для оцінки лінійної або нелінійної синхронізації зразків ЕЕГ, відведених від різних локусів кори. Визначення індексів взаємної інформації використовувалося для оцінки нелінійної синхронізації згідно з комплексними вейвлет-коефіцієнтами за вейвлет-шкалами. Було порівняно ступені синхронізації ЕЕГ-активності в групі пацієнтів, що страждали на ХА помірної тяжкості (оцінки за MMSE від 10 до 19 балів), та в групі із 110 контрольних здорових суб’єктів. Найістотніші зменшення індексів взаємної інформації у пацієнтів із ХА спостерігалися по третій шкалі для фронто-темпоральної зони; зменшення вейвлет-когерентності відзначались у тих самих зонах, що й зміни взаємної інформації. Саме ці зони зазнають переважної атрофії при ХА. Використаний новий метод базується на оцінках взаємної інформації за вейвлет-шкалами та демонструє більшу дискримінаційну здатність в умовах ХА, аніж визначення вейвлет-когерентності

    Rumination-Focused Cognitive Behavioral Therapy Reduces Rumination and Targeted Cross-network Connectivity in Youth With a History of Depression: Replication in a Preregistered Randomized Clinical Trial

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. Background: Rumination-focused cognitive behavioral therapy (RF-CBT) is designed to reduce depressive rumination or the habitual tendency to dwell on experiences in a repetitive, negative, passive, and global manner. RF-CBT uses functional analysis, experiential exercises, and repeated practice to identify and change the ruminative habit. This preregistered randomized clinical trial (NCT03859297, R61) is a preregistered replication of initial work. We hypothesized a concurrent reduction of both self-reported rumination and cross-network connectivity between the left posterior cingulate cortex and right inferior frontal and inferior temporal gyri. Methods: Seventy-six youths with a history of depression and elevated rumination were randomized to 10 to 14 sessions of RF-CBT (n = 39; 34 completers) or treatment as usual (n = 37; 28 completers). Intent-to-treat analyses assessed pre-post change in rumination response scale and in functional connectivity assessed using two 5 minute, 12 second runs of resting-state functional magnetic resonance imaging. Results: We replicated previous findings: a significant reduction in rumination response scale and a reduction in left posterior cingulate cortex to right inferior frontal gyrus/inferior temporal gyrus connectivity in participants who received RF-CBT compared with those who received treatment as usual. Reductions were large (z change = 0.84; 0.73, respectively [ps < .05]). Conclusions: This adolescent clinical trial further demonstrates that depressive rumination is a brain-based mechanism that is modifiable via RF-CBT. Here, we replicated that RF-CBT reduces cross-network connectivity, a possible mechanism by which rumination becomes less frequent, intense, and automatic. This National Institute of Mental Health-funded fast-fail study continues to the R33 phase during which treatment-specific effects of RF-CBT will be compared with relaxation therapy.National Institute of Mental HealthHuntsman Mental Health Institut

    New England Medical Center Posterior Circulation Stroke Registry II. Vascular Lesions

    Get PDF
    Among 407 New England Medical Center Posterior Circulation Registry (NEMC-PCR) patients, the extracranial (ECVA) and intracranial vertebral arteries (ICVA) were the commonest sites of severe occlusive disease followed by the basilar artery (BA). Severe occlusive lesions were found in >1 large artery in 148 patients; 134 had unilateral or bilateral severe disease at one arterial location. Single arterial site occlusive disease occurred most often in the ECVA (52 patients, 15 bilateral) followed by the ICVA (40 patients, 12 bilateral) and the BA (46 patients). Involvement of the ICVAs and the BA was very common and some patients also had ECVA lesions. Hypertension, smoking, and coronary and peripheral vascular disease were most prevalent in patients with extracranial disease while diabetes and hyperlipidemia were more common when occlusive lesions were only intracranial. Intra-arterial embolism was the most common mechanism of brain infarction in patients with ECVA and ICVA occlusive disease. ICVA occlusive lesions infrequently caused infarction limited to the proximal territory (medulla and posterior inferior cerebellum). BA lesions most often caused infarcts limited to the middle posterior circulation territory (pons and anterior inferior cerebellum). Posterior cerebral artery occlusive lesions were predominantly embolic. Penetrating artery disease caused mostly pontine and thalamic infarcts. Prognosis was poorest in patients with BA disease. The best prognosis surprisingly was in patients who had multiple arterial occlusive lesions; they often had position-sensitive transient ischemic attacks during months or years

    The Drosophila TRPP Cation Channel, PKD2 and Dmel/Ced-12 Act in Genetically Distinct Pathways during Apoptotic Cell Clearance

    Get PDF
    Apoptosis, a genetically programmed cell death, allows for homeostasis and tissue remodelling during development of all multi-cellular organisms. Phagocytes swiftly recognize, engulf and digest apoptotic cells. Yet, to date the molecular mechanisms underlying this phagocytic process are still poorly understood. To delineate the molecular mechanisms of apoptotic cell clearance in Drosophila, we have carried out a deficiency screen and have identified three overlapping phagocytosis-defective mutants, which all delete the fly homologue of the ced-12 gene, known as Dmel\ced12. As anticipated, we have found that Dmel\ced-12 is required for apoptotic cell clearance, as for its C. elegans and mammalian homologues, ced-12 and elmo, respectively. However, the loss of Dmel\ced-12 did not solely account for the phenotypes of all three deficiencies, as zygotic mutations and germ line clones of Dmel\ced-12 exhibited weaker phenotypes. Using a nearby genetically interacting deficiency, we have found that the polycystic kidney disease 2 gene, pkd2, which encodes a member of the TRPP channel family, is also required for phagocytosis of apoptotic cells, thereby demonstrating a novel role for PKD2 in this process. We have also observed genetic interactions between pkd2, simu, drpr, rya-r44F, and retinophilin (rtp), also known as undertaker (uta), a gene encoding a MORN-repeat containing molecule, which we have recently found to be implicated in calcium homeostasis during phagocytosis. However, we have not found any genetic interaction between Dmel\ced-12 and simu. Based on these genetic interactions and recent reports demonstrating a role for the mammalian pkd-2 gene product in ER calcium release during store-operated calcium entry, we propose that PKD2 functions in the DRPR/RTP pathway to regulate calcium homeostasis during this process. Similarly to its C. elegans homologue, Dmel\Ced-12 appears to function in a genetically distinct pathway

    New England Medical Center Posterior Circulation Stroke Registry: I. Methods, Data Base, Distribution of Brain Lesions, Stroke Mechanisms, and Outcomes

    Get PDF
    Among 407 New England Medical Center Posterior Circulation Registry (NEMC-PCR) patients, 59% had strokes without transient ischemic attacks (TIAs), 24% had TIAs before strokes, and 16% had only posterior circulation TIAs. Embolism was the commonest stroke mechanism accounting for 40% of cases (24% cardiac origin, 14% arterial origin, 2% had potential cardiac and arterial sources). In 32%, large artery occlusive lesions caused hemodynamic brain infarction. Stroke mechanisms in the posterior and anterior circulation are very similar. Infarcts most often included the distal posterior circulation territory (rostral brainstem, superior cerebellum and occipital and temporal lobes), while the proximal (medulla and posterior inferior cerebellum) and middle (pons and anterior inferior cerebellum) territories were equally involved. Infarcts that included the distal territory were twice as common as those that included the proximal or middle territories. Most distal territory infarcts were attributable to embolism. Thirty day mortality was low (3.6%). Embolic stroke mechanism, distal territory location, and basilar artery occlusive disease conveyed the worst prognosis

    Loss of PTB or Negative Regulation of Notch mRNA Reveals Distinct Zones of Notch and Actin Protein Accumulation in Drosophila Embryo

    Get PDF
    Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    Capabilities and Limitations of Tissue Size Control through Passive Mechanical Forces

    Get PDF
    Embryogenesis is an extraordinarily robust process, exhibiting the ability to control tissue size and repair patterning defects in the face of environmental and genetic perturbations. The size and shape of a developing tissue is a function of the number and size of its constituent cells as well as their geometric packing. How these cellular properties are coordinated at the tissue level to ensure developmental robustness remains a mystery; understanding this process requires studying multiple concurrent processes that make up morphogenesis, including the spatial patterning of cell fates and apoptosis, as well as cell intercalations. In this work, we develop a computational model that aims to understand aspects of the robust pattern repair mechanisms of the Drosophila embryonic epidermal tissues. Size control in this system has previously been shown to rely on the regulation of apoptosis rather than proliferation; however, to date little work has been done to understand the role of cellular mechanics in this process. We employ a vertex model of an embryonic segment to test hypotheses about the emergence of this size control. Comparing the model to previously published data across wild type and genetic perturbations, we show that passive mechanical forces suffice to explain the observed size control in the posterior (P) compartment of a segment. However, observed asymmetries in cell death frequencies across the segment are demonstrated to require patterning of cellular properties in the model. Finally, we show that distinct forms of mechanical regulation in the model may be distinguished by differences in cell shapes in the P compartment, as quantified through experimentally accessible summary statistics, as well as by the tissue recoil after laser ablation experiments
    corecore