128 research outputs found

    Assessment of hydrological drought in the north-eastern part of Romania

    Get PDF
    On the background of amplification of hydro-climatic drought in the last decades, in this paper we try to evaluate a series of indexes for assessing hydrological droughts. To characterize the hydrological drought, minimum flow parameters are successively analyzed: percentiles from the flow duration curve, mean annual minimum flow, base flow index and recession indeces. Also was used some indices to evaluate the water deficit from streams like thereshold level method and the sequent peak algorithm. Each method was exemplified using data from hydrometric stations from Bahlui drainage basin and associated data from 2012 summer drought. The results show that in the 2002-2014 period, the average drought duration of the cold season is 23 days, but with a low water deficit due to conditions of quartering it in the form of ice and snow layer. In summer season, the average lenght of hydrological drought is 22 days, with a huge water deficit which may exceed 37.5 mil. m3 as happened in the summer of 2012

    Snake Venom Disintegrins and Cell Migration

    Get PDF
    Cell migration is a key process for the defense of pluricellular organisms against pathogens, and it involves a set of surface receptors acting in an ordered fashion to contribute directionality to the movement. Among these receptors are the integrins, which connect the cell cytoskeleton to the extracellular matrix components, thus playing a central role in cell migration. Integrin clustering at focal adhesions drives actin polymerization along the cell leading edge, resulting in polarity of cell movement. Therefore, small integrin-binding proteins such as the snake venom disintegrins that inhibit integrin-mediated cell adhesion are expected to inhibit cell migration. Here we review the current knowledge on disintegrin and disintegrin-like protein effects on cell migration and their potential use as pharmacological tools in anti-inflammatory therapy as well as in inhibition of metastatic invasion

    Strategies to inhibit tumour associated integrin receptors: rationale for dual and multi-antagonists

    Get PDF
    YesThe integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions; thrombosis, angiogenesis and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress towards development of antagonists targeting two or more members of the RGD-binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics

    Vicrostatin – An Anti-Invasive Multi-Integrin Targeting Chimeric Disintegrin with Tumor Anti-Angiogenic and Pro-Apoptotic Activities

    Get PDF
    Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN) can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., αvβ3, αvβ5, and α5β1), VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC) inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis). Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN) was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN

    Ion-acoustic waves in weakly ionized plasmas with charge-exchange collisions

    No full text
    International audienceIon-neutral charge-exchange collisions in plasmas of laboratory, space, and astrophysical origins are fundamental to understanding wave dissipation and wave generation phenomena. This paper implements a charge-exchange collision operator in the Boltzmann–Poisson system equations for a weakly ionized plasma. When considering an electric field perturbation, the governing kinetic equations provide significant results concerning the plasma conductivity and the dielectric function, appearing in simple, sensible forms. The present analysis reveals a backward wave propagation phenomenon at maximum conductivity when the wavenumber of the plasma wave is smaller than the reciprocal of the ion-neutral collisions mean free path. In addition, it is shown that ion-neutral coupling resulting from charge-exchange collisions enhances ion-acoustic waves below and beyond the ion plasma frequency and leads to the onset of a fundamental instability that overcomes Landau damping under certain circumstances. The collisionless model is recovered as a limiting case, i.e., in the asymptotic limit of a long mean free path

    Numerical study of beam propagation and plasma properties in the neutralizer and the E-RID of the ITER Neutral Beam Injector

    No full text
    International audienceNon-ohmic heating will be used in the experimental nuclear fusion reactor ITER to reach thermonuclear temperatures. Two heating mechanism will be implemented, i.e. microwaves resonant with ion and electron cyclotron frequencies and energetic neutral beam injection, which contributes also to the current drive. Each one of the two neutral beam injector planned for ITER will deliver 16 MW of 1 MeV D0 beam. In the injector, negative ions D− coming from a 40 A negative ion source are electrostatically accelerated to 1 MeV, and stripped of their extra electron by collision with a target gas in a structure known as the neutralizer. Residual charged particles are deflected after the neutralizer in an electrostatic ion dump (E-RID). The ionization of the deuterium buffer gas filling the neutralizer induced by the D− beam creates a rarefied plasma which is expected to efficiently screens the Coulomb repulsion of the beam. Moreover, this plasma can eventually escape from the neutralizer and move back in the accelerator, towards the accelerating grids and the negative ion source. The transport of the beam through the neutralizer and the RID and the related plasma properties were studied using a 3D electrostatic particle-in-cell code called OBI-3 (Orsay Beam Injector 3 dimensional). Particle–particle and particle–wall collisions are treated using the Monte Carlo collision approach. Simulations show that the secondary plasma effectively screens the beam space charge preventing beam transverse expansion. Plasma ions created in the neutralizer form an upstream current with a magnitude of ~0.5% of the negative ion current. Gas breakdown leading to arc formation in the RID was not observed. Finally, results for the propagation of non-ideal beams coming from simulations of the extraction and consecutive acceleration taken from Revel et al 2013 Nucl. Fusion 53 073027 are presented

    Time resolved metal line profile by near-ultraviolet tunable diode laser absorption spectroscopy

    No full text
    International audienc
    • …
    corecore