9,556 research outputs found

    Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception

    Full text link
    Choosing an appropriate set of stimuli is essential to characterize the response of a sensory system to a particular functional dimension, such as the eye movement following the motion of a visual scene. Here, we describe a framework to generate random texture movies with controlled information content, i.e., Motion Clouds. These stimuli are defined using a generative model that is based on controlled experimental parametrization. We show that Motion Clouds correspond to dense mixing of localized moving gratings with random positions. Their global envelope is similar to natural-like stimulation with an approximate full-field translation corresponding to a retinal slip. We describe the construction of these stimuli mathematically and propose an open-source Python-based implementation. Examples of the use of this framework are shown. We also propose extensions to other modalities such as color vision, touch, and audition

    ESTSS at 20 years: "a phoenix gently rising from a lava flow of European trauma"

    Get PDF
    Roderick J. Ørner, who was President between 1997 and 1999, traces the phoenix-like origins of the European Society for Traumatic Stress Studies (ESTSS) from an informal business meeting called during the 1st European Conference on Traumatic Stress (ECOTS) in 1987 to its emergence into a formally constituted society. He dwells on the challenges of tendering a trauma society within a continent where trauma has been and remains endemic. ESTSS successes are noted along with a number of personal reflections on activities that give rise to concern for the present as well as its future prospects. Denial of survivors' experiences and turning away from survivors' narratives by reframing their experiences to accommodate helpers' theory-driven imperatives are viewed with alarm. Arguments are presented for making human rights, memory, and ethics core elements of a distinctive European psycho traumatology, which will secure current ESTSS viability and future integrity

    The relativistic solar particle event of 2005 January 20: origin of delayed particle acceleration

    Full text link
    The highest energies of solar energetic nucleons detected in space or through gamma-ray emission in the solar atmosphere are in the GeV range. Where and how the particles are accelerated is still controversial. We search for observational information on the location and nature of the acceleration region(s) by comparing the timing of relativistic protons detected on Earth and radiative signatures in the solar atmosphere during the particularly well-observed 2005 Jan. 20 event. This investigation focuses on the post-impulsive flare phase, where a second peak was observed in the relativistic proton time profile by neutron monitors. This time profile is compared in detail with UV imaging and radio spectrography over a broad frequency band from the low corona to interplanetary space. It is shown that the late relativistic proton release to interplanetary space was accompanied by a distinct new episode of energy release and electron acceleration in the corona traced by the radio emission and by brightenings of UV kernels. These signatures are interpreted in terms of magnetic restructuring in the corona after the coronal mass ejection passage. We attribute the delayed relativistic proton acceleration to magnetic reconnection and possibly to turbulence in large-scale coronal loops. While Type II radio emission was observed in the high corona, no evidence of a temporal relationship with the relativistic proton acceleration was found

    Caractérisation de l'aléa climatique pluvieux en région méditerranéenne : analyse statistique des surfaces pluvieuses

    Get PDF
    Ces 10 dernières années, certains épisodes pluvieux marquants ont entraîné une prise de conscience du risque encouru par les agglomérations modernes face à des phénomènes hydrologiques particuliers. La gestion du risque pluvial passe par une amélioration de la connaissance de l'aléa pluvieux. Dans cet article, on développe une approche stochastique exploitant le potentiel d'informations contenu dans un échantillon d'épisodes pluvieux extrêmes ayant ou ayant pu engendrer des crues dévastatrices. Une approche spatiale est utilisée pour caractériser l'aléa pluvieux. A partir d'un jeu d'épisodes extrêmes sélectionnés sur une région méditerranéenne entre 1958 et 1993, on estime l'aire des surfaces où les précipitations dépassent un seuil de pluviométrie fixé. L'estimation des aires des surfaces pluvieuses nécessite le recours à un modèle d'interpolation spatiale des hauteurs de pluie. La justification du krigeage climatologique est présentée ainsi que l'estimation des paramètres du modèle retenu. Les distributions des aires des isohyètes, à différents seuils de pluviométrie, sont ensuite analysées. Il apparaît que quelle que soit l'isohyète considérée, une loi gamma peut être ajustée sur l'échantillon de surface. Une relation entre les paramètres des lois permet une généralisation du modèle probabiliste à n'importe quel seuil de pluie compris entre 50 et 300 mm.In the last 10 years many cities in southern Europe have been affected by heavy rainfall events leading to severe runoffs. The assessment of rainfall risk requires a better knowledge of the climate hazards and particularly rainfall hazards. The most usual rainfall risk assessment is based on a stochastic approach and point rainfall frequency analysis remains the most-used method. However, in the Mediterranean region great variations of rainfall depth frequencies can be observed according to the point considered, and according to the period of observation. Moreover the recent hydrological catastrophes which have affected the south of France have been studied on an individual basis and studies based on a global approach, using the whole information contained in a sample of several observations, remain unusual.A rainfall risk assessment has been proposed in the Languedoc-Roussillon, a 28,000 km2 region along the Mediterranean sea. This study has been based on a sample of 93 daily extreme rainfall events, which have occurred in the region. They have been extracted from the Météo-France database for the 1958-1993 period of observation, if a rainfall depth greater or equal to 190 mm in 24 hours or 48 hours (because of the sampling constraints) has been observed at one rain gauge in the region at least. The spatial extension of the rainy surfaces defined at different rainfall thresholds, varying from 50 to 250 mm/24 hours and 50 to 300 mm/48 hours, have been investigated. For a given threshold, the area of the rainy surface corresponding to a given frequency has been estimated.The estimation of the rainy surfaces area has required the choice of a spatial interpolation method: the climatological kriging method has been used. This method is based on the assumption that all the rainfall events came from the same meteorological situation, but some studies have shown that there may be different meteorological situations (TOURASSE, 1981; RIVERAIN, 1997). Thus the sensitivity of the interpolation model according to this assumption has been tested. A different interpolation model has been estimated for each season because the information about the meteorological situations which have generated the selected events is not available. Only the variogram over June to August differs significantly from the "annual" variogram. The differences between the rainy surfaces area estimated with the "seasonal" variogram and the "annual" one did not exceed 10% in proportion of the areas estimated with the "annual" variogram. The rainy surface areas are less sensitive to the climatological assumption. For each time step and each rainfall threshold considered, it has been observed that the two parameter Gamma law could best fit the frequencies of the rainy surface areas. The relation between each of the Gamma law parameters and the rain threshold has been estimated (relations R1 and R2). The quantiles of the rainy surface areas have been estimated with two methods :- directly from the fitting of a Gamma function to the sample of rainy surface areas; - using the previous relation to estimate the Gamma function parameters. It has been observed that the quantiles estimated with the second method were close to those estimated with the first method, even if the fitting errors of the R1 and R2 relations were considered. Such a result allows one to estimate the regional frequency of a rainy surface areas defined at each threshold between 50 and 300 mm/48 hours or 50 and 250 mm/24 hours. However extrapolations beyond the studied threshold intervals should not be done because the R1 and R2 relations are empirical.The isohyets area quantiles have been defined: they represent the isohyet area corresponding to a given rainfall threshold and a given return period. The isohyet area quantiles may be very large; for example at the 200 mm / 48 hours threshold the isohyets area represents 15% of the region (4500 km2). This can be explained by the time step dt. The isohyets area represents the dynamics of the convective cells integrated over dt, which remains unknown but is greater than 48 hours. Moreover for a given rainfall threshold and a given event, several separate isohyets could be observed. However in this study only the all areas corresponding to the different isohyets have been estimated. Thus it could give a very large area when the event affects the all region.The ratio between the isohyet area quantiles at the 48-hour and 24-hour time steps evolved from 1.3 to 20: it increased with the rainfall threshold for a given return period. This can be explained by the strong dynamics of the convective cells which generate the highest rainfall depths, compared to the rain cells at a larger spatial scale, which generate lower rainfall depths. Thus the isohyet areas defined at a high rainfall threshold are sensitive to the time steps than isohyet areas defined at a smaller rainfall threshold.The frequencies estimated in this study have been regional frequencies, but it appears that the isohyet areas are not independent of the event's location. However, at this stage the sample is too small to allow a study of conditional frequencies. In order to perform this study the sample has already been enlarged by considering all the French Mediterranean region which have been affected by heavy rainfall depths. It has been based on all the information included in the Météo-France data base over this region (since 1870). The rainfall threshold used to select the rainfall events has been diminished to 90 mm/ 24 hours to include the high intensity events over short time steps which could generated severe floods, especially over small catchments.Combined with the information about the meteorological situations, the development of this work should allow improved studies of the relations between the rainy surfaces and the meteorological situations at the origin of the rainfall events

    Magnetostrictive hysteresis of TbCo/CoFe multilayers and magnetic domains

    Full text link
    Magnetic and magnetostrictive hysteresis loops of TbCo/CoFe multilayers under field applied along the hard magnetization axis are studied using vectorial magnetization measurements, optical deflectometry and magneto optical Kerr microscopy. Even a very small angle misalignment between hard axis and magnetic field direction is shown to drastically change the shape of magnetization and magnetostrictive torsion hysteresis loops. Two kinds of magnetic domains are revealed during the magnetization: big regions with opposite rotation of spontaneous magnetization vector and spontaneous magnetic domains which appear in a narrow field interval and provide an inversion of this rotation. We show that the details of the hysteresis loops of our exchange-coupled films can be described using the classical model of homogeneous magnetization rotation of single uniaxial films and the configuration of observed domains. The understanding of these features is crucial for applications (for MEMS or microactuators) which benefit from the greatly enhanced sensitivity near the point of magnetic saturation at the transverse applied field.Comment: 10 pages, 11 figure

    Fibroblast Growth Factor 22 Is Not Essential for Skin Development and Repair but Plays a Role in Tumorigenesis

    Get PDF
    PMCID: PMC3380851This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Interplanetary Magnetic Field Guiding Relativistic Particles

    Get PDF
    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth
    corecore