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Abstract

Fibroblast Growth Factors play critical roles during development, tissue homeostasis and repair by controlling cell
proliferation, survival, migration and differentiation. Of the 22 mammalian FGFs, FGF22, a member of the FGF7/10/22
subfamily, has been shown to have a clear role in synaptogenesis, but its roles in other tissues have not been studied. We
have investigated the in vivo functions of FGF22 in mice. Fgf22 null animals were viable, fertile and did not display any
obvious abnormalities. Despite the known expression profile of FGF22 in the skin, no differences in either skin or pelage
were observed, demonstrating that FGF22 is dispensable during embryogenesis and in unchallenged adult skin. Mice
lacking FGF22 were able to heal acute wounds just as efficiently as wild type mice. However, classical two-step skin
carcinogenesis challenge revealed that FGF22 null mice developed fewer papillomas than wild type controls, suggesting
a potential pro-oncogenic role for FGF22 in the skin.
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Introduction

Fibroblast Growth Factors (FGFs) are a large family of 22

signalling molecules, responsible for regulating a range of cellular

processes including proliferation, survival, migration, differentia-

tion and response to injury [1]. Their various roles have been

delineated through a large number of genetically modified mouse

studies (reviewed in [2]). They act, for the most part, as secreted

growth factors, which bind to receptor tyrosine kinases on nearby

cells. FGFs can be grouped into subfamilies, based on sequence

similarity and receptor specificity [1,3,4].

The biological activities of FGFs are mediated by high affinity

cell surface tyrosine kinase receptors. FGF7/10/22 subfamily

members activate two main receptors: FGFR1b and FGFR2b,

although they signal preferentially, and exclusively in the case of

FGF7, via FGFR2b [4,5]. Striking phenotypic similarities between

fgf10 and fgfr2b knockout mice [6,7,8], together with rather modest

phenotypes of fgf7 [9] and fgfr1b [10] knockout mice, have

established the FGF10-FGFR2b axis as a key ligand-receptor

partnership in embryogenesis. FGF22 is a relatively understudied

member of the FGF7/10/22 subfamily [11]. In the skin, FGFs 7,

10 and 22 act predominately on cells of epithelial origin but,

uniquely, FGF22 is expressed by epithelial cells [12], suggesting

a cell autonomous role.

Expression of FGF22 is relatively restricted. It first was detected,

by Northern blot, in placenta, brain and skin [11]. In murine skin,

expression of FGF22 begins at embryonic day 16.5, as determined

by RNase protection assay [12]. In adult mouse skin, FGF22 is

expressed in the inner root sheath (IRS) of the hair follicle [11] and

in the interfollicular epidermis [12]. During hair development, the

dermal papilla, a cluster of specialised mesenchymal cells within

the dermis, signals to epidermal follicular stem cells to proliferate

and differentiate into IRS, medulla and cortex cells, which

together with the cuticle cells undergo terminal differentiation to

form the mature hair fibre [13]. FGF7 and FGF10 are expressed

in the dermal papilla of the hair follicle [14] and fgf7 knockout

mice displayed a mild hair phenotype, with male mice developing

greasy, matted hair with age [9]. Furthermore, transgenic mice

overexpressing FGF7 in the epidermis demonstrated abnormal

patterns of hair growth [15], and subcutaneous or intraperitoneal

injections of recombinant FGF7 into nude mice stimulated hair

growth by extending the anagen phase of the hair cycle [16]. Since

both fgf10 and fgfr2b knockout mice die at birth, their hair

phenotype is hard to study. Nevertheless, late stage fgfr2b knockout

embryos showed a reduction in hair follicle development, with

significantly fewer, developmentally retarded, hair follicles relative

to wild type littermates [17]. Skin grafting studies, using late stage

fgfr2b null and wild type foetuses, showed that FGFR2b signalling

was crucial for normal epidermal growth and development as well

as for subsequent hair follicle morphogenesis [18]. Transgenic

mice expressing dominant-negative FGFR2b in differentiating

hair keratinocytes developed abnormally thin, but otherwise

normal, hairs characterised by single columns of medulla cells in
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all hair types [13]. Mice lacking fgfr2b only in the epidermis

developed similarly thin and silky pelage hair [19].

FGFs 7, 10 and 22 show distinct temporal expression patterns

through the murine hair cycle, with both FGF7 and FGF10

expressed highly at anagen V (day 8), when hair grows vigorously,

and FGF22 expression strong at anagen VI (day 18), when hair

follicle reaches its maximum length [20]. This pattern of

expression recapitulates that seen during the wound healing

process [12].

FGF7 is expressed weakly in normal murine and human skin,

but, upon injury, its expression is up-regulated dramatically [21].

FGF10 levels also increase rapidly following wounding [22] and

levels of both growth factors decline once re-epithelialisation is

complete [20]. In contrast, FGF22 expression declines during the

first days after wounding and remains low until day 5 after injury.

Subsequently, the expression increases above basal levels at day 7

after wounding and remains elevated until day 13, being localised

to the hyperthickened epidermis of fully healed wounds [12]. Fgf7

knockout mice showed no defect in their ability to repair incisional

wounds and the proliferation rate of keratinocytes at the wound

edge was not impaired [9]. This was unexpected, since transgenic

animals expressing a kinase-deficient, dominant-negative,

FGFR2b displayed a severe delay in wound re-epithelialisation,

with an 80–90% reduction in the number of proliferating

keratinocytes in the hyperproliferative epithelium of five day old

excisional wounds, compared with control mice [23]. Truncated

FGFR2b abrogates the effects of FGF7, FGF10, FGF1 and FGF3,

thus blocking the potential ligand redundancy seen in fgf7

knockout mice, where FGF10 may be sufficient to drive normal

repair. Supporting this hypothesis, a significant delay in wound re-

epithelialisation was seen in mice lacking dendritic epidermal T

cells (DETC), an important source of FGF7 and FGF10 in the

healing wound [24]. Finally, mice lacking FGFR1b, a receptor for

FGF10 but not FGF7, did not display abnormalities in skin

development or repair [10].

Epidermal specific deletion of fgfr2b resulted in a loss of

sebaceous glands and abnormal hair development, with mice

developing thickened epidermis over time and showing exquisite

sensitivity to chemical-induced skin carcinogenesis [19]. Deletion

of both fgfr1 and fgfr2 led to an even more extreme phenotype, with

dramatic hair loss and epidermal hyperthickening, demonstrating

the importance of FGFR signaling in skin homeostasis [25].

What emerges from the above picture is that there is a clear role

for FGF signalling in the wound healing process and that this role

is protected by redundancy at the level of both ligand and

receptor. Our current study builds on these data as the first to

investigate the role of FGF22 in the skin, using a germline

knockout approach.

Results

Generation of fgf22 Knockout Mice
Mice lacking fgf22 were generated by replacing the fgf22

genomic sequence with a Neomycin selection cassette, such that

homologous recombination eliminated the entire coding region of

the fgf22 gene (exons 1, 2 and 3) (Fig. 1A). Two G418-resistant

clones were identified as homologous recombinants by Southern

blot analysis, after EcoRI digestion (Fig. 1B), using a probe

external to the homologous sequence to confirm correct targeting.

The two mutant clones were injected separately into C57Bl6/J

blastocysts. Male chimaeric animals of at least 70% 129ola

contribution (as judged by coat colour) were mated with C57Bl6/J

females and the offspring of these mice were screened for germline

transmission. Heterozygous offspring were mated to produce

homozygous mutants, which were born at the expected Mendelian

frequency of 25% for both clones (1C12 and 1E1). PCR

genotyping was performed to identify fgf22 knockout mice, with

primers for the wild type (wt) allele generating a 286 bp product

and null (ko) allele a 130 bp product (Fig. 1C). Knockout mice

from both clones were indistinguishable in terms of cutaneous

histology (data not shown), so just one clone (1E1) was used for the

functional investigations presented.

To verify that targeted homologous recombination resulted in

abrogation of FGF22 mRNA expression, total RNA was isolated

from mouse brain, known to express FGF22 at a detectable level

[11]. Following cDNA synthesis, PCR was performed using

primers recognising exon1 and exon3 of the fgf22 coding sequence.

As expected, relative to control wild type mouse brain, FGF22

mRNA expression was reduced in heterozygous brains and

completely absent in knockout mice (Fig. 1D). Unfortunately, we

were unable to detect endogenous levels of FGF22 protein in cells

or tissue from control mice, using a polyclonal antiserum known to

detect FGF22 expression in cells transfected with a constitutive

FGF22 expression construct [12].

Characterisation of fgf22 Knockout Mice
Fgf22 knockout animals were viable, fertile and did not display

any obvious abnormalities, demonstrating that FGF22 is not

essential for embryonic development. As FGF22 is both a ligand

for FGFR2b and is expressed in the skin, we first performed

a detailed analysis of those epidermal structures affected by lack of

FGFR2b in the epidermis. H&E stained sections of back and tail

skin from wild type and knockout mice also showed identical

histologically, in terms of epidermal, dermal and adipose thickness

as well as hair follicle frequency (Fig. 2A1–A4). There were no

evident differences in pelage growth or sebaceous gland morphol-

ogy between knockout and wild type mice. All the major hair types

(zigzag, guard and awl/auchene) were present in knockout mouse

back skin, at the expected frequencies (70% zigzag, 28% awl/

auchene and 2% guard hairs) and these hairs did not demonstrate

any morphological differences when compared with those of wild

type littermates (Fig. 2B) or compared to published mouse hair

phenotypes [26]. Furthermore, average length of zigzag hairs

(8.7 mm) was identical between genotypes. Whole-mount staining

of the sebaceous glands in adult tail skin confirmed no differences

between knockout and wild type mice (Fig. 2C).

Since there were no defects evident in the unchallenged skin of

fgf22 knockout mice, we investigated their capacity to respond to

skin injury and carcinogenic insult, both of which have been

shown to depend at least in part on FGF signalling. Wound

healing studies, where mice were subject to 3 mm diameter full

thickness punch biopsy wounds, showed that mice lacking FGF22

were able to heal acute wounds just as efficiently as wild type mice,

although 5 days after wounding knockout male wounds appeared

to have healed faster (Fig. 3A), with more efficient re-epithelialisa-

tion (Fig. 3F) and a high rate of proliferation of cells involved in the

process at this time-point (Fig. 3B1 and B2, quantified in 3E).

However, at all other time-points during wound healing,

morphometric analysis showed very similar values for both male

and female fgf22 wild type and knockout animals (Fig. 3E, F and

G). Moreover, Sirius red staining of 14 day old wounds from male

fgf22 knockout and wild type controls showed no difference in

collagen fibre reorganization during healing (Fig. 3C and D).

To complement the in vivo wound healing study, we isolated

keratinocytes from back skin of wild type and knockout mice and

compared their behaviour in a 2D scratch wound assay.

Keratinocytes from fgf22 knockout mice were able to close the

FGF22 in Skin Development and Repair
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Figure 1. Generation of fgf22 knockout mice. A) Targeting strategy for the fgf22 knockout mouse. Schematic representations of the endogenous
mouse fgf22 locus (middle), targeting construct (top) and disrupted allele (bottom). Black boxes in the wild type allele represent exons 1 to 3. E
indicates EcoRI restriction enzyme recognition sites. PCR primers used for genotyping are represented by arrows. B) Southern blots showing
successful recombination in ES cells used for generation of fgf22 null mice. Of 192 ES clones analysed, two scored positive for homologous
recombination (1C12 and 1E1) and displayed identical hybridisation patterns. C) PCR analysis of genomic DNA isolated from ear snips of an
heterozygous breeding pair of both identified mutant clones. Fgf22 wt (+/+) samples show a single band at 286 bp (mice 1, 3 and 4), fgf22 ko (2/2)
display a single ko allele at 130 bp (mice 2 and 7) and heterozygous (+/2) samples amplify both wt and ko alleles (mice 5, 6 and 8). D) Confirmation of
gene deletion. RT-PCR analysis of cDNA generated from mouse brain. Samples from wild type mice (+/+) display an intense fgf22 band, fgf22
heterozygous samples (+/2) display same size band of decreased intensity and fgf22 knockout samples (2/2) lack the presence of a correct size
band. GAPDH primers were used as a control for RNA quality and concentration. Blank represents PCR reaction mix without cDNA.
doi:10.1371/journal.pone.0039436.g001
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wound gap just as effectively and rapidly as those from wild type

animals at all timepoints (Fig. 4A and B).

Finally, we challenged the mice with a classical two-step skin

carcinogenesis assay using DMBA and TPA. These experiments

were performed on female mice, since they involved long-term

observation and multiple mice could be kept together. When

cohorts of fgf22 knockout female mice were subjected to two-step

(DMBA/TPA) skin carcinogenesis treatment, they developed

significantly less papillomas than wild type mice. Fgf22 wild type

and knockout mice subjected to TPA treatment alone never

developed papillomas (Fig. 5A). Over the duration of the

experiment, only 50% of DMBA treated knockout mice developed

papillomas, compared to 100% of treated wild type mice (Fig. 5A).

The time when 50% of mice developed papillomas was delayed by

16 weeks in fgf22 knockout mice compared with wild type controls

(Fig. 5A). Tumour multiplicity was difficult to judge since these

studies were performed on a tumour refractory C57Bl6/J

background, so few papillomas formed during the study. With

the exception of one outlier knockout female that developed five

papillomas, the remaining knockout mice never developed more

than one papilloma per mouse. The maximum number of

papillomas on a DMBA treated wild type female was two (Fig. 5B).

Papillomas that did develop showed identical histology between

genotypes, with an exophytic appearance and no areas of

epithelial invasion (Fig. 5C).

These findings raised the question of whether FGF22 might

interfere with the tumour-suppressive effect of FGFR2b (Fig. 5D).

We therefore investigated whether treatment with FGF22 altered

the biochemical response to FGF treatment in HaCaT cells, an

immortalised human keratinocyte cell line [27]. In order to ensure

that our HaCaT cell line exhibited a standard response to FGF

stimulation, serum starved cells were stimulated with FGFs 7, 10

and 22 (100 ng/ml) in the presence of Heparin (300 ng/ml) in

serum free media for 15, 30 and 60 minutes. Western blotting

using an antibody specific to phosphorylated ERK confirmed that

stimulation with FGFs 7 and 10 triggered rapid ERK phosphor-

ylation, and this response was blocked by pre-treatment with the

FGFR inhibitor, PD173074 (1.7 mM; 30 minutes; Fig. 6A). In

contrast, FGF22 elicited no such response, with P-ERK levels

remaining the same as in unstimulated cells (Fig. 6A; NB: blot was

exposed for longer time relative to FGF7 and FGF10 to allow

visualisation of the P-ERK signal). Total ERK levels from the

same blot stripped and re-probed are shown as a loading control.

To investigate whether FGF22 might modulate the capacity of

FGF7 and 10 to activate ERK signalling, HaCaT cells were

treated with FGF7 and 10 either concomitantly with FGF22 or

following a four hour pre-treatment with FGF22 (all at 100 ng/ml;

Fig. 6B and C). As above, cells were lysed after 0, 15, 30 and 60

minutes and lysates analysed by Western blot. Neither pre-

treatment (four hours at 100 ng/ml) or co-treatment with FGF22

showed any effect on the timecourse of ERK phosphorylation

elicited by stimulation with FGF7 or FGF10 (Fig. 6B and C

respectively), although basal levels of ERK phosphorylation were

raised very slightly by pre-treatment with FGF22, as shown by

ImageJ quantitation of five independent experiments. Further-

more, we used an siRNA pool to knock down FGF22 expression in

HaCaT cells (Sup Fig. S1) and confirmed that this also had no

effect on response to stimulation with either FGF7 or 10 (Fig. 6D).

Expression levels of the FGF7 target gene NRF2 were also

unaltered in knockdown cells (Sup Fig. S1). Finally, performing

Realtime RT-PCR on RNA isolated from back skin of eight-week-

old control and knockout female mice, we confirmed that

expression levels of FGF7 and FGF10 were not altered signifi-

cantly between genotypes (Sup Fig. S2).

Discussion

Numerous studies on FGF7, FGF10 and their receptors have

shown the importance of this subfamily of FGFs for normal

embryonic development and adult tissue homeostasis. However,

Figure 2. Normal skin and pelage hair in fgf22 knockout mice. A) Histological analysis of H&E stained back (A1 and A2) and tail (A3 and A4)
skin sections from four-month-old fgf22 wild type and knockout mice. No differences were observed in skin thickness or morphology, when back skin
or tail skin sections from control and fgf22 null mice were compared. (EP epidermis, DE dermis, AD adipose tissue, PC panniculus carnosus, HF hair
follicle, * sebaceous gland). Scale bar (200 mm). B) Comparison of pelage hair structure. All major hair shaft types (zigzag, guard and awl/auchene)
were present in both wild type and knockout animals. The morphology of different hair types showed no difference between wild type and fgf22
knockout mice as shown by light microscopic analysis. Hairs were plucked from eight-week-old wild type mice (n = 100 hairs) and compared with
hairs of fgf22 knockout mice (n = 100 hairs). Scale bar = 200 mm. C) Tail epidermis whole-mount preparations from 10 weeks old mice, stained with
Mayer’s haemalum, revealed no difference between wild type and fgf22 knockout mice in terms of sebaceous gland number and morphology. Hair
follicle is indicated by arrow and sebaceous gland by asterisk.
doi:10.1371/journal.pone.0039436.g002
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little is known about the role and importance of FGF22 in these

processes. Previous studies have shown that FGF22 is expressed in

the brain, where it is essential for the development of excitatory

synapses [28]. Furthermore, FGF22 deficient mice, generated

commercially (Deltagen, San Mateo, CA), are resistant to

pentylenetetrazol-induced epileptic seizures [29], though lack of

FGF22 does not affect behaviour in unchallenged mice.

FGF22 is expressed in the inner root sheath of the hair follicle

[11] and has been shown to bind to FGFR2b [4]. Since there was

a clear defect in hair development in fgfr2b null skin [19], we

analysed the hair of fgf22 knockout mice. All three major hair types

were present in identical proportions to those seen in wild type

littermates and no effects on sebaceous gland morphology were

observed, suggesting either that redundancy prevents occurrence

of an overt phenotype in the fgf22 knockout mouse, or that its role

is non-essential in unchallenged skin. Recent studies have

established that signaling downstream of FGFR2b and FGFR1b

is essential for skin homeostasis and epidermal barrier function,

Figure 3. Normal wound repair in fgf22 knockout mice. A) H&E stained tissue sections of 3 mm punch biopsy wounds 5 days after wounding.
B1–B2) Tissue sections immunostained for 5-bromo-2-deoxyuridine. High power fields in B2) focus on BrdU-positive cells (brown) at the wound site. C
and D) Sirius red staining of sections from wild type and fgf22 knockout male mice skin 14 days post-wounding. C) represents the same section in
bright field as D) in dark field. The spectrum of colours from green, yellow, orange and red progressively exhibits the packing of collagen molecules.
(D dermis, HE hyperproliferative epidermis, HF hair follicle, G granulation tissue, BC blood clot. Wound margins are indicated by arrows). Scale bar
(200 mm) in A, B1, C, D; (50 mm) in B2. E). The percentage positive BrdU score was calculated from immunostained sections from B1 by counting the
total number of positive and negative cells within the wound margins and then deriving the percentage of positive cells. Plots represent mean of
three independent wounds per genotype per time point where two slides per wound were counted. Error bars represent SEM. F) and G)
Morphometric analysis of wound repair. Morphometric measurements of wounds were performed on three independent wounds for each genotype
and each time point. F) Wound gap was calculated as the distance between two margins of the inward growing epithelium and was measured three
times for each wound section. G) The area of migrating epithelial tongue was also measured. Error bars represent SEM.
doi:10.1371/journal.pone.0039436.g003
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with skin specific FGFR1/2 double knockout mice having

a defective skin barrier and developing epidermal hyperthickening

with age, as a result of chronic inflammation [25]. Given that fgf22

knockout mice do not phenocopy those changes, FGF22 clearly is

not essential for normal skin physiology.

Therefore, we analysed the capacity of FGF22 null mouse skin

to respond to a challenging stimulus; either to wounding (Fig. 3) or

to classical two-step skin carcinogenesis (Fig. 5), since both of these

interventions cause an increase in keratinocyte proliferation; either

transiently in the case of wound repair or more permanently in the

case of carcinogenesis. These studies allowed us to question

whether FGF22 was capable of driving keratinocyte differentiation

and/or inhibiting proliferation.

During wound healing, in contrast to FGF7 and FGF10, which

appear to drive the healing process, FGF22 expression is up

regulated towards the end of repair [12]. Thus, we hypothesised

that it may act as a negative regulator of FGFR2 signalling, either

decreasing proliferation or increasing differentiation, to safeguard

against over-proliferation of keratinocytes. However, fgf22 knock-

out mice did not display any defects in wound healing (Fig. 3). It is

possible that, as repair progresses, the decrease in expression of

pro-mitogenic ligands is sufficient to dampen the epithelial healing

process. This apparent redundancy in the FGF-FGFR axis during

repair is not without precedent, as mice lacking fgf7 or fgfr1b

showed no wound healing phenotype, despite expression of these

molecules being reported during the repair process [9,12]. Support

for a redundant role of FGF22 in repair comes from the lack of

difference in in vitro wound closure by primary keratinocytes

isolated from wild type and knockout mice (Fig. 4).

Our skin carcinogenesis data suggest that FGF22 may play a role

in skin carcinogenesis, with the decreased sensitivity to chemically

induced carcinogenesis in fgf22 knockout mice implying that basal

expression of FGF22 confers sensitivity to skin carcinogenesis. In

contrast, mice lacking FGFR2b in the skin develop spontaneous

papillomas and show great sensitivity to chemically induced

carcinogenesis [19]. Thus the ligand and its receptor appear to

have antagonizing effects, with a tumour suppressive receptor,

FGFR2b, appearing to be activated by a putative oncogenic

ligand, FGF22. One model that might explain this is that FGF22

might act to antagonise the tumour suppressive role of FGFR2b,

by competing with the protective ligands FGF7 and FGF10

(Fig. 5D). In this case, lack of FGF22 would cause increased

signalling via FGF7 and FGF10. However, our cell-based

investigations in the spontaneously immortalized HaCaT kerati-

nocyte cell line showed FGF22 to have no effect on FGF7- or

FGF10-dependent ERK activation (Fig. 6 and Sup Fig. S2).

FGF7 is known to regulate genes that encode for mediators of

cytoprotection, including the antioxidant Peroxiredoxin VI and

the transcription factor Nrf2 [30,31,32,33]. In fgfr2b knockout

mice, this cytoprotective mechanism is impaired due to lack of

signalling receptor, and this most likely contributes to the dramatic

incidence of papillomas in response to chemically induced

carcinogenesis. Therefore we hypothesised that in fgf22 knockout

mice, where FGF7 and/or FGF10 do not have to compete with

FGF22 for receptor binding, it may allow stronger FGF-mediated

cytoprotective signalling and, consequently, reduced papilloma

formation (Fig. 5D). However, knock down of endogenous FGF22

mRNA in HaCaT cells did not result in a change in expression of

NRF-2, suggesting that this potential mechanism needs further

investigation. Due to the inability to detect FGF22 protein by

western blot, we cannot absolutely exclude that FGF22 protein

levels remain unaffected despite clear mRNA knock down. FGF7,

in particular, is known to be cytoprotective for keratinocytes, with

a recombinant form of FGF7 used clinically in the treatment of

oral mucositis in patients undergoing bone marrow transplantation

[34]. Future studies generating mice over-expressing FGF22 in the

skin will allow us to address this mechanism. Taken together, our

data provide evidence that FGF22 is not essential for skin

development or repair but may play an important role in skin

tumorigenesis, though the mechanism remains to be determined.

Figure 4. In vitro wound healing. Scratch wound assay was
performed on primary keratinocytes isolated from wild type and fgf22
knockout male back skin. A) Photographs show the migration of wild
type and knockout primary keratinocytes to wounded regions of the
monolayer culture at 0, 12, 18 and 32 h post wounding. Scale bar
(200 mm). B) Wound closure was monitored, photographed and
measured at all timepoints after wounding. Error bars represent SEM.
doi:10.1371/journal.pone.0039436.g004
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Materials and Methods

Generation of fgf22 Knockout Mice
A gene targeting construct was made by flanking a Neo selection

marker cassette with fragments of DNA homologous to the fgf22

genomic locus. The 59 arm consisted of 5 kb of genomic sequence

59 to the translation start site of fgf22, in exon 1, and the 39 arm

comprised 1.2 kb sequence 39 to exon 3 of fgf22. 129ola mouse

embryonic stem cells were used as a genomic DNA source. The

targeting vector, constructed in pBluescript SK+ (Stratagene, La

Jolla, Ca, USA), thus was designed to eliminate the entire coding

sequence of fgf22 by deleting the coding region of exon 1 and the

whole of exons 2 and 3. The targeting vector DNA was transfected

into isogenic 129ola ES cells and G418 resistant clones were

screened by Southern blot for correct homologous recombination.

Of a total of 192 ES clones analysed, 2 correctly targeted clones

displayed identical hybridisation patterns and were injected

separately into C57Bl6/J blastocysts. The resulting chimeras were

mated with wildtype C57/BL6 female mice to obtain germline

transmission.

Southern Blotting
Genomic ES cell DNA was digested overnight with EcoRI and

separated by electrophoresis on a 0.8% Agarose/TBE gel. The gel

was photographed under UV illumination and then DNA was

transferred overnight in 0.4 M NaOH onto a positively charged

nylon membrane (Nytran SuPerCharge, Whatman, Maidstone,

UK). A P32-dCTP-labelled screening probe (59Fgf22), correspond-

ing to 400 bp of fgf22 genomic sequence upstream of the 59

homology arm, was prepared using Ready-To-Go DNA Labelling

Beads (GE Healthcare, Amersham, UK) according to the

manufacturer’s instructions. The membrane was hybridized with

50 ng of 32P-labelled probe, exposed overnight to a storage

phosphor screen and read on a Storm 860 phosphorimage scanner

(Molecular Dynamics, Sunnyvale, Ca, USA).

Figure 5. DMBA-induced tumorigenesis study. Cohorts of female mice (n = 10) were subjected to classical two-step skin carcinogenesis
treatment. A) At 58 weeks post initiation, when the experiment was terminated, 100% of DMBA treated wild type mice had developed papillomas
while only 50% of knockout treated mice had papillomas. Control TPA treated mice of both genotypes never developed any neoplastic skin lesions.
B) Average number of papillomas per mouse at the indicated times after the start of DMBA/TPA treatment. With the exception of one outlier
knockout female that developed five papillomas, the remaining knockout mice never developed more than one papilloma per mouse. The maximum
number of papillomas on a DMBA treated wild type female was two. In addition to regression of some papillomas over time, when mice died, the
average papilloma count was re-calculated for the remaining live mice, thus the average count could go up and down over the course of the
experiment. Circles represent mice killed due to papillomas reaching the maximum size specified by Home Office licence. Asterisks represent deaths
due to unrelated reasons. C) H&E staining of 4 mm sections from papillomas of wild type and fgf22 knockout mice showed identical histology, with
exophytic growth and no sign of epithelial invasion (CS cornified squames; Ep epithelium; S stroma). D) Cartoon illustrating difference in response of
wild type, fgf22 knockout and skin-specific fgfr2b knockout mice to chemically induced carcinogenesis and a proposed model for the phenotypes
seen. We hypothesise that lack of downstream cytoprotective signalling mediated via Fgfr2b could potentially promote a more pro-tumorigenic
phenotype.
doi:10.1371/journal.pone.0039436.g005
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Genotyping
Genomic DNA isolated from ear snips or tail biopsies was used

for PCR genotyping. Primers for the wild type (59-TTGTGAAC-

CAAGATGGCAGG-39 and 59-CCAGCTTTGGACTT-

CATCTG-39) and knockout (59-TCGACTAGAGGAT-

CAGCTTG-39 and 59 CAGGCCAGCATAGTCTACTT-39)

fgf22 alleles generated 286 bp and 130 bp PCR products,

respectively.

RT-PCR
RT-PCR was performed to confirm FGF22 transcript deletion

in fgf22 knockout mice. Total RNA was isolated from brains of

adult wild type, heterozygous and knockout animals using TRI

reagent (Sigma, Poole, UK), and reverse transcribed (Super-

ScriptTM II RT, Invitrogen, Paisley, UK) using random hexamer

primers. RT-PCR was performed using primers (59-ATTCTA-

GAATGCGCAGCCGCCTCTGG-39 and 59-ATGGGCCCT-

CAAGACGAGACCAAGAC-39) that amplified a 482 bp frag-

ment of the FGF22 cDNA. GAPDH was amplified as a control

housekeeping gene using published primers for mouse and human

sequence [19,35].

Realtime RT-PCR
Realtime RT-PCR was performed to assess relative mRNA

expression levels of Fgf7 and Fgf10 in Fgf22 wild type and

knockout mice. RNA extraction and reverse transcription was

performed as above. Similarly, expression levels of FGF22 and

NRF2 were quantified in HaCaT cells treated with scrambled

control or FGF22 targeting siRNA pools. RNA was isolated using

TRI reagent according to the manufacturer’s instructions and as

for skin samples. Primers used were Fgf7 (59-GAACAAAAGT-

CAAGGAGCAACC-39 and 59-GTCATGGGCCTCCTCC-

TATT-39), Fgf10 (59-GAGAAGAACGGCAAGGTCAG-39 and

59-CTCTCCTGGGAGCTCCTTTT-39) and NRF2 [30].

FGF22 primers were as for RT-PCR. All reactions were

performed in triplicate. A negative control was performed with

all the mix components except the cDNA sample. GAPDH

primers were used as internal control. The reaction was performed

using SYBR green (Qiagen, Crawley, UK) in a StepOne Plus

Realtime PCR System (Applied Biosystems, Life technologies,

USA) thermal cycler according to manufacturer’s instructions.

The results were evaluated using the 22DDct method [36].

Histological Analysis
Normal and wounded back skin and tail skin were harvested

and processed as described previously (Grose et al., 2007). Sections

(4 mm) were analyzed using Haematoxylin/Eosin, anti-59bromo-

deoxyuridine (BrdU) and Sirius red staining.

Hair Analysis
Hair subtypes were analyzed by plucking hairs from the middle

of the back of five eight weeks old wild type and fgf22 knockout

female mice (n = 100 hairs per genotype). They were measured

and classified as guard, awl or auchene based on their appearance

[26] under a light microscope (Axiophot, Zeiss, Welwyn, UK).

Immunohistochemistry
For detection of proliferating cells labelled with BrdU, paraffin

sections (4 mm) were incubated with a peroxidase-conjugated

monoclonal antibody directed against BrdU (1:500 dilution;

Abcam, Cambridge, UK) for 1 h at room temperature. The

signal was amplified using a StreptABComplex/HRP kit (Dako,

Ely, UK) according to the manufacturer’s instructions, before

peroxidase detection with a 3,39- Diaminobenzidine substrate kit

(Dako). Sections were counterstained with Mayer’s haemalum and

mounted with Permount (Fisher Scientific, Loughborough, UK).

BrdU Scoring
Cells exhibiting brown nuclear staining or showing mitotic

figures were included in deriving the proliferation score. Cells

stained in any of the categories 1 (faint), 2 (moderate) and 3

(strong) were considered positive whereas cells showing an absence

of brown nuclear staining were considered negative. The

percentage positive BrdU score was calculated by counting the

total number of positive and negative cells over a specified field

and then deriving the percentage of positive cells. A field was

defined as the grid area provided in the microscope graticule

(10610 squares) under a x400 magnification (10x ocular and 40x

objective). Ten fields per sample were counted. The fields to be

included in the score were chosen on the basis of the observer’s

interpretation of fields best representing the heterogeneity of

wound tissue across the sample.

Sirius Red Staining
To evaluate collagen organization in healing wounds, paraffin

sections of full thickness 14 day wounds of fgf22 wild type and

knockout mice were stained with Sirius red. In bright-field

microscopy, Sirius red stains collagen fibres in red on a pale

yellow background. The same slides, when examined through

a microscope with cross-polarised light show that the larger

collagen fibres (collagen type I) are bright yellow or orange, and

the thinner ones, including reticular fibres and collagen type III,

are green. The more mature and well organized the collagen

fibres, the greater the birefringence intensity. De-waxed and

hydrated paraffin wound sections were stained in Picro-sirius red

(0.1% Sirius Red F3B in saturated aqueous solution of Picric Acid)

for one hour, then washed in two changes of acidified water (0.5%

Glacial Acetic Acid), dehydrated and mounted as above.

Tail Epidermis Wholemounts
Epidermal wholemounts were prepared by peeling tail skin off

the bone, after making a scalpel incision along the length of the

tail, and cutting into 5 mm2 pieces. These were incubated in

5 mM EDTA in PBS for 4 h at 37uC. Epidermal sheets were

peeled away from the dermis and fixed in 1% Acetic Acid/95%

overnight at 4uC. After rinsing in 100% ethanol, specimens were

Figure 6. FGF signaling in HaCaT cells. A) HaCaT keratinocytes that had been serum-starved overnight were stimulated with FGF7, FGF10 or
FGF22 (100 ng/ml) for 0, 15, 30 or 60 minutes and lysed in sample buffer prior to Western blotting. FGF7 and FGF10 elicited rapid ERK
phosphorylation, whereas FGF22 yielded no significant response (phospho-ERK staining appears stronger due to increased length of exposure – to
allow visualization of bands). B and C) Serum-starved HaCaT cells were stimulated as above with 100 ng/ml FGF7 (B) or FGF10 (C) either following
a 4 h pre-treatment with FGF22 (100 ng/ml) or concomitant with FGF22 treatment. In each case, experiments were repeated (n = 5) and bands
quantified using ImageJ (bars represent SEM). No reduction in ERK signalling was observed in either case. D) Forty-eight hours post-transfection with
scrambled control non-targeting siRNA or FGF22 siRNA (both at 10 nM), serum-starved HaCaT cells were stimulated with either FGF7 or FGF10 (both
100 ng/ml) for 15 or 60 minutes and levels of phospho-ERK and total ERK analysed by Western blot as described above. No difference in ERK
phosphorylation was detected in either case, with experiments repeated (n = 3) and bands quantified using Image (bars represent SEM).
doi:10.1371/journal.pone.0039436.g006
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rehydrated through an ethanol series to water, transferred to PBS,

counterstained for 10 seconds in a 1:4 dilution of Mayer’s

haemalum/water and mounted in 30% Glycerol in PBS.

Primary Keratinocyte Culture
Primary keratinocytes were isolated from back skin of adult

mice. Hair from the dorsal skin of a mouse, killed by cervical

dislocation, was removed with electric clippers and depilatory

cream (Nair, Church & Dwight, New Jersey, US), applied to the

skin surface for approximately 3 minutes. Excess cream was

removed and the skin was washed under running water. Next,

mice were washed twice for 2 minutes in Iodine solution, rinsed in

sterile water and washed for 262 minutes in 70% ethanol. Skin

was then cut from neck to tail and peeled off using forceps. Skin

was placed, epidermis side down, on a sterile surface and the

hypodermis was carefully scraped off using a scalpel blade. Next,

the skin was stretched flat and a piece of autoclaved no. 1 filter

paper (Whatman) was applied onto the exposed surface of the

dermis. The skin, including the attached paper, was cut into

10 mm wide strips using sterile scissors and floated, dermis side

down, on the surface of 1% Trypsin in PBS, and incubated for 2 h

at 37uC. The epidermis was peeled off using curved forceps and

placed into ice-cold PCT Epidermal Keratinocyte Medium

containing 1.3 mM Ca2+ (Millipore, Watford, UK). The epider-

mal sheets were dispersed in the medium using sterile scissors, until

pieces were small enough to enter the tip of a 10 ml pipette. The

resulting suspension was triturated by pipetting up and down 30

times, then transferred into a 50 ml conical tube on ice, leaving

behind most of the cornified squames. The cell suspension was

centrifuged at 2006g for 5 minutes. The cell pellet then was

resuspended in high calcium medium (1.3 mM; CnT-07CF,

Millipore) and filtered through a 100 mm cell strainer (BD

Biosciences, Oxford, UK) into a new 50 ml conical tube. Cells

were centrifuged at 2006g for 5 minutes and the cell pellet was

resuspended in 10 ml high calcium medium. The cells were

counted, centrifuged again and resuspended in the desired volume

of low calcium medium (0.05 mM) to obtain a final cell

concentration of 106 cells/ml. Cells were plated on Collagen I

coated 60 mm dishes (VWR, Lutterworth, UK), at a concentration

of 106 cells per dish.

Primary keratinocytes were incubated in 7% CO2 overnight at

36uC. The next day, the medium containing unattached cells was

aspirated, the dish was rinsed with calcium/magnesium free PBS

(Sigma) and fresh low calcium media was added. Thereafter cells

were maintained in low calcium medium, with medium changed

every two days.

In vitro Scratch Wound Assay
Primary keratinocytes were seeded at a density of 106 cells per

well in Collagen I pre-coated 6-well plates (VWR) and grown to

near confluency, when the culture medium was replaced with

starving medium (1% FCS) for 2 hours. Scratch wounds were

made, using a sterile 200 ml micropipette tip to form a cross in

each well, and medium was replaced with low calcium (0.05 mM)

medium (CnT-07CF, Millipore) containing 8% calcium free FCS

(Biosera, Ringmer, UK). To determine the rate of cell migration,

images were acquired at 0, 12, 18 and 32 h post-wounding using

a Time-lapse microscope set up (Zeiss). Scratch widths were

measured at 20 points along their length using ImageJ software

version 1.429 (National Institute of Health, Wayne Rasband,

USA). The percentage of migration was determined relative to the

scratch width at 0 hours.

In vivo Wound Healing
Full-thickness excisional wounds were generated in shaved

dorsal skin of 6–8 weeks old mice using a 3 mm biopsy punch.

Wounds were examined daily and collected after 0, 1, 5, 14, and

21 days for analysis. Mice were housed in isolator cages of up to 3

mice, control and knockout animals were housed separately. For

each time point, 3 female and 3 male mice of each genotype were

analysed. One hour prior to culling, mice were injected with BrdU

(0.25 mg/kg; Sigma). Wounds were excised together with 2 mm of

surrounding tissue and one wound per mouse was placed on

a nitrocellulose membrane (GE Healthcare) and fixed overnight in

1% Glacial Acetic Acid/99% Ethanol at 4uC for histological

analysis. Morphometric analysis of wound repair was performed

on Haematoxylin/Eosin stained paraffin sections using ImageJ

software. The wound gap was calculated as the distance between

two margins of the inward growing epithelium and was measured

three times for each wound section. The area of epithelial tongue

also was determined using ImageJ 1.429 software (National

Institute of Health, Wayne Rasband, USA) to outline the entire

wound epithelium, starting from the most wound proximal hair

follicle.

Skin Carcinogenesis
Cohorts of seven weeks old female wild type and fgf22 knockout

mice were subjected to two-step skin carcinogenesis protocol

performed as described previously [19]. Female mice (n = 10 per

group) were treated, at eight weeks of age, with topically

administered DMBA (25 mg in 200 ml acetone; Sigma), or vehicle

alone as a control. From 9 weeks old, all mice were treated weekly

with TPA (7.4 mg in 200 ml acetone; Sigma) for 15 weeks. Mice

were monitored on a daily basis and papilloma/tumour counts

were recorded weekly for up to 58 weeks post-initiation, at which

stage the experiment was terminated. If mice appeared sick or the

lesion reached a predefined limit of 14 mm diameter, they were

killed and examined post-mortem. Skin lesions and macroscopi-

cally normal skin were harvested and fixed overnight in 10%

Buffered Formalin for histological analysis. All animal experiments

were approved by Cancer Research UK London Research

Institute ethics committee and carried out under Home Office

licence (70/5387, 70/5878), according to Institutional guidelines

at Cancer Research UK London Research Institute.

HaCaT Cells
HaCaT cells, an immortalized human keratinocyte line (kind

gift of Dr P. Boukamp; [27]), were cultured in DMEM

supplemented with 10% foetal bovine serum at 37uC, and 8%

CO2. Cells were passaged weekly in T75 flasks and all the

experiments were performed with sub-confluent cells. HaCaT cells

at 70% confluence were stimulated with hFGF7, hFGF10

(PeproTech, London, UK) or hFGF22 (Cambridge Bioscience)

at a concentration of 100 ng/ml, co-treated with Heparin

(300 ng/ml). FGF dependent stimulation was blocked by 30

minute pre-treatment with the FGFR specific inhibitor, PD173074

(1.7 mM; Sigma).

Western Blot Analysis
Cultured cells were lysed with NuPAGE LDS Sample buffer 2x

(Invitrogen; supplemented with 100 mM DTT) for 5 minutes at

room temperature, prior to scraping and brief sonication. Lysates

were loaded in 4–12% gradient NuPAGE gels and run at 110 V at

room temperature in NuPAGE MES running buffer (Invitrogen).

Proteins were transferred onto nitrocellulose membranes (Schlei-

cher & Schuell, Whatman) by electro-blotting for 3 h (4uC) at
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30 V in Tris/Glycine buffer with 20% methanol and transfer was

confirmed with Ponceau Red (Sigma) staining of the membranes.

After de-staining in distilled water, membranes were incubated in

blocking buffer (5% powdered milk in TBS) for 30 minutes at

room temperature. Membranes were then incubated with 1u
antibody overnight at 4uC. After rinsing in TBS containing 0.1%

Tween-20 (365 minutes), membranes were incubated with 2u
antibody for 1 h at room temperature, rinsed in TBS with 0.1%

Tween-20 (365 minutes), and developed (ECL Chemilumines-

cence; GE Healthcare). Antibodies used were as follows; anti-

phospho-p44/42 MAPK (Cat. #4370, Cell Signaling, New

England Biolabs, Hitchin, UK) and anti-MAPK1 (Cat. #05-

957, Upstate, Millipore). Primary antibodies were diluted 1:1000

in TBS +3% BSA and incubate overnight at 4uC. Secondary

antibodies (Dako), coupled with horseradish peroxidase, were used

at a 1:1000 dilution, incubated for 1 h at room temperature.

Densitometric analysis was performed using ImageJ 1.429

software. Signal density was normalized to anti-ERK antibody

as a loading control, for at least three separate treatments.

RNA Interference
SiRNA used (Dharmacon, Cramlington, UK): Genome smart

pool for human FGF22, M-013171. Cells (40–50% confluent in 6-

well plates) were transfected for 4 h with siRNA (10 nM) using

4 ml Interferin (Polyplus transfection; PeqLab, Fareham UK), in

a total reaction volume of 1.1 ml in each well of a 6-well plate.

Messenger RNAs and functional activity were assayed 48 h post-

transfection, and compared with mock and/or control siRNA-

treated cells (SiControl Non-Targeting siRNA pool; D-001210

Dharmacon).

Supporting Information

Figure S1 RNAi-mediated knock down of FGF22 in
HaCaT cells. HaCaT cells were subject to mock transfection

(Ctr) or transfection with 10 nM control non-targeting siRNA

(Scr) or siRNA to FGF22 (1 nM or 10 nM). Messenger RNA levels

for FGF22 and NRF2 were measured by Realtime PCR,

normalised to GAPDH. Samples were run in triplicate and

a representitive repeat is shown. FGF22 RNA levels were reduced

by 50% following RNA interference, but levels of NRF2

expression were unaffected.

(TIF)

Figure S2 Expression of Fgf7 and Fgf10 mRNA in fgf22
wild type and knockout mice. Realtime PCR on RNA

samples isolated from back skin of eight-week-old mice showed no

significant difference in the expression levels of Fgf7 or Fgf10

mRNA between control mice (Ctr) and null mice (2/2). Results

were normalised to GAPDH as a control for RNA concentration

and integrity. Experiments were carried out on 6 female mice and

error bars represent standard error among the samples.

(TIF)
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