1,021 research outputs found

    The terrestrial and semi-aquatic invertebrates of intermittent rivers and ephemeral streams

    Get PDF
    Intermittent rivers and ephemeral streams (IRES), which cease flow and/or dry at some point, are the most abundant waterways on earth, and are found on every continent. They can support a diverse, and often abundant, terrestrial and semi‐aquatic invertebrate (TSAI) fauna, which has been poorly explored due to its position at the fringe between aquatic and terrestrial disciplines. TSAIs can inhabit a variety of habitat types, including the shoreline, the surface of exposed gravel bars, unsaturated gravels, dry riverbeds, riparian zones, and floodplains. Much less is known about the species composition and ecological roles of TSAIs of IRES than their aquatic counterparts, with TSAIs being largely overlooked in conceptual models, legislation, policy, and ecological monitoring. Herein we review the TSAI literature that has increased substantially over the last decade and present conceptual models describing how TSAIs respond to hydrological changes in IRES. Then, we test these models with data collected during wet and dry phases in IRES from Australia and France. These generic models can be utilised by water managers and policy makers, ensuring that both wet and dry phases are considered in the management and protection of IRES. IRES should be viewed as a habitat continuum through time, with taxa from a pool of aquatic, semi‐aquatic and terrestrial invertebrates inhabiting at any hydrological stage. We call for collaboration among terrestrial and aquatic ecologists to explore these invertebrates and ecosystems further

    Searching for overturning convection in penumbral filaments: slit spectroscopy at 0.2 arcsec resolution

    Full text link
    Recent numerical simulations of sunspots suggest that overturning convection is responsible for the existence of penumbral filaments and the Evershed flow, but there is little observational evidence of this process. Here we carry out a spectroscopic search for small-scale convective motions in the penumbra of a sunspot located 5 deg away from the disk center. The position of the spot is very favorable for the detection of overturning downflows at the edges of penumbral filaments. Our analysis is based on measurements of the Fe I 709.0 nm line taken with the Littrow spectrograph of the Swedish 1 m Solar Telescope under excellent seeing conditions. We compute line bisectors at different intensity levels and derive Doppler velocities from them. The velocities are calibrated using a nearby telluric line, with systematic errors smaller than 150 m/s. Deep in the photosphere, as sampled by the bisectors at the 80%-88% intensity levels, we always observe blueshifts or zero velocities. The maximum blueshifts reach 1.2 km/s and tend to be cospatial with bright penumbral filaments. In the line core we detect blueshifts for the most part, with small velocities not exceeding 300 m/s. Redshifts also occur, but at the level of 100-150 m/s, and only occasionally. The fact that they are visible in high layers casts doubts on their convective origin. Overall, we do not find indications of downflows that could be associated with overturning convection at our detection limit of 150 m/s. Either no downflows exist, or we have been unable to observe them because they occur beneath tau=1 or the spatial resolution/height resolution of the measurements is still insufficient.Comment: Accepted for publication in Ap

    Metabolic response of early-lactating cows exposed to transport and high altitude grazing conditions

    Get PDF
    The metabolic response of dairy cows to high as opposed to low altitude conditions (2000 m v. 400 m above sea level) was determined. In the first experiment, four cows were subjected to a series of measurements before, during and after transport from lowland to high altitude pasture. During transport, cortisol, l-lactate and non-esterified fatty acids were significantly elevated but decreased within 1 to 3 days to initial levels. After transport, β-hydroxybutyrate and the thyroid hormones immediately increased and returned within 3 weeks to initial levels. Plasma urea increased during transport and subsequently was at an intermediate level due to the different diet. There were no direct carry-over effects of transport on metabolic traits during pasturing. In the second experiment, three groups of six different dairy cows were either grazed in one of two consecutive years or kept inside (2nd year only). Lowland sojourn lasted for 4 weeks, and high altitude period for 8 weeks. At the end of high altitude sojourn, both outside and inside groups were found still to have significantly higher plasma cortisol values than at lowland. Thyroid hormones and ketosis related metabolites sharply increased at the start of the alpine period and were elevated for 1 to 3 weeks thereafter. According to the hormonal and metabolic profiles, the permanently housed cows did not benefit from the less adverse climatic conditions and the lower physical strain. Plasma urea closely reflected dietary changes in the ratio of nitrogen to fermentable organic matter. Plasma protein, albumin, creatinine, and liver enzyme activities were not affected by transport or high altitude sojourn in both experiments. The results indicate that the metabolic response to transport and high altitude conditions can be mostly explained by the efforts to cover the additional energy requirements. Overall the data suggest a wide but nevertheless limited ability of early-lactating cows to adapt to high altitude condition

    Magnetic properties of G-band bright points in a sunspot moat

    Full text link
    We present simultaneous spectropolarimetric observations of four visible and three infrared spectral lines from the VTT (Tenerife), together with speckle-reconstructed filtergrams in the G band and the CaII H line core from the DOT (La Palma). After alignment of the data sets, we used the G-band intensity to locate bright points (BPs) in the moat of a regular sunspot. With the cospatial and cotemporal information provided by the polarimetric data, we characterize the magnetic, kinematic, and thermal properties of the BPs. We find that (a) 94 % of the BPs are associated with magnetic fields; (b) their field strengths range between 500 and 1400 G, with a rather flat distribution; (c) the contrast of BPs in the G band depends on the angle between the vector magnetic field and the line of sight; (d) the BPs harbor downflows of magnetized plasma and exhibit Stokes V profiles with large area and amplitude asymmetries; (e) the magnetic interior of BPs is hotter than the immediate field-free surroundings by about 1000 K at equal optical depth; and (f) the mean effective diameter of BPs in our data set is 150 km, with very few BPs larger than 300 km. Most of these properties can be explained by the classical magnetic flux tube model. However, the wide range of BP parameters found in this study indicates that not all G-band BPs are identical to stable long-lived flux tubes or sheets of kG strength.Comment: Accepted in A&A, 20 pages, 21 figures in main text, 6 fig. in the Appendices, 3 figures as jpg (fig. 5, C1, C2

    Theoretical Models of Sunspot Structure and Dynamics

    Full text link
    Recent progress in theoretical modeling of a sunspot is reviewed. The observed properties of umbral dots are well reproduced by realistic simulations of magnetoconvection in a vertical, monolithic magnetic field. To understand the penumbra, it is useful to distinguish between the inner penumbra, dominated by bright filaments containing slender dark cores, and the outer penumbra, made up of dark and bright filaments of comparable width with corresponding magnetic fields differing in inclination by some 30 degrees and strong Evershed flows in the dark filaments along nearly horizontal or downward-plunging magnetic fields. The role of magnetic flux pumping in submerging magnetic flux in the outer penumbra is examined through numerical experiments, and different geometric models of the penumbral magnetic field are discussed in the light of high-resolution observations. Recent, realistic numerical MHD simulations of an entire sunspot have succeeded in reproducing the salient features of the convective pattern in the umbra and the inner penumbra. The siphon-flow mechanism still provides the best explanation of the Evershed flow, particularly in the outer penumbra where it often consists of cool, supersonic downflows.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    A Rat Model of Human Lipid Emulsion Digestion

    Get PDF
    A better understanding of how dietary lipids are processed by the human body is necessary to allow for the control of satiation and energy intake by tailored lipid systems. To examine whether rats are a valid model of human dietary lipid processing and therefore useful for further mechanistic studies in this context, we tested in rats three lipid emulsions of different stability, which alter satiety responses in humans. Different sets of 15 adult male Sprague Dawley rats, equipped with gastric catheters alone or combined with hepatic portal vein (HPV) and vena cava (VC) catheters were maintained on a medium-fat diet and adapted to an 8 h deprivation/16 h feeding schedule. Experiments were performed in a randomized cross-over study design. After gastric infusion of the lipid emulsions, we assessed gastric emptying by the paracetamol absorption test and recorded in separate experiments food intake and plasma levels of gastrointestinal hormones and metabolites in the HPV. For an acid stable emulsion, slower gastric emptying and an enhanced release of satiating gastrointestinal (GI) hormones were observed and were associated with lower short-term energy intake in rats and less hunger in humans, respectively. The magnitude of hormonal responses was related to the acid stability and redispersibility of the emulsions and thus seems to depend on the availability of lipids for digestion. Plasma metabolite levels were unaffected by the emulsion induced changes in lipolysis. The results support that structured lipid systems are digested similarly in rats and humans. Thus unstable emulsions undergo the same intragastric destabilization in both species, i.e., increased droplet size and creaming. This work establishes the rat as a viable animal model for in vivo studies on the control of satiation and energy intake by tailored lipid systems

    Brightness, distribution, and evolution of sunspot umbral dots

    Full text link
    We present a 106-minute TiO (705.7nm) time series of high spatial and temporal resolution that contains thousands of umbral dots (UDs) in a mature sunspot in the active region NOAA 10667 at μ\mu=0.95. The data were acquired with the 1-m Swedish Solar Telescope on La Palma. With the help of a multilevel tracking (MLT) algorithm the sizes, brightnesses, and trajectories of 12836 umbral dots were found and analyzed. The MLT allows UDs with very low contrast to be reliably identified. Inside the umbra we determine a UD filling factor of 11%. The histogram of UD lifetimes is monotonic, i.e. a UD does not have a typical lifetime. Three quarters of the UDs lived for less than 150s and showed no or little motion. The histogram of the UD diameters exhibits a maximum at 225km, i.e. most of the UDs are spatially resolved. UDs display a typical horizontal velocity of 420m/s and a typical peak intensity of 51% of the mean intensity of the quiet photosphere, making them on average 20% brighter than the local umbral background. Almost all mobile UDs (large birth-death distance) were born close to the umbra-penumbra boundary, move towards the umbral center, and are brighter than average. Notably bright and mobile UDs were also observed along a prominent UD chain, both ends of which are located at the umbra-penumbra boundary. Their motion started primarily at either of the ends of the chain, continued along the chain, and ended near the chain's center. We observed the splitting and merging of UDs and the temporal succession of both. For the first time the evolution of brightness, size, and horizontal speed of a typical UD could be determined in a statistically significant way. Considerable differences between the evolution of central and peripheral UDs are found, which point to a difference in origin

    Stokes imaging polarimetry using image restoration at the Swedish 1-m Solar Telescope

    Full text link
    Aims: We aim to achieve high spatial resolution as well as high polarimetric sensitivity, using an earth-based 1m-class solar telescope, for the study of magnetic fine structure on the Sun. Methods: We use a setup with 3 high-speed, low-noise cameras to construct datasets with interleaved polarimetric states, particularly suitable for Multi-Object Multi-Frame Blind Deconvolution image restorations. We discuss the polarimetric calibration routine as well as various potential sources of error in the results. Results: We obtained near diffraction limited images, with a noise level of approximately 10^(-3) I(cont). We confirm that dark-cores have a weaker magnetic field and at a lower inclination angle with respect to the solar surface than the edges of the penumbral filament. We show that the magnetic field strength in faculae-striations is significantly lower than in other nearby parts of the faculae.Comment: Accepted for publication in Astronomy & Astrophysics, 12 pages, 11 figure

    Models and Observations of Sunspot Penumbrae

    Get PDF
    The mysteries of sunspot penumbrae have been under an intense scrutiny for the past 10 years. During this time, some models have been proposed and refuted, while the surviving ones had to be modified, adapted and evolved to explain the ever-increasing array of observational constraints. In this contribution I will review two of the present models, emphasizing their contributions to this field, but also pinpointing some of their inadequacies to explain a number of recent observations at very high spatial resolution. To help explaining these new observations I propose some modifications to each of them. These modifications bring those two seemingly opposite models closer together into a general picture that agrees well with recent 3D magneto-hydrodynamic simulations.Comment: 9 pages, 1 color figure. Review talk to appear in the proceedings of the International Workshop of 2008 Solar Total Eclipse: Solar Magnetism, Corona and Space Weather--Chinese Space Solar Telescope Scienc
    corecore