561 research outputs found

    Humoral response in a patient with cutaneous nocardiosis

    Get PDF
    The clinical appearance of infection due to Nocardia spp. varies widely. The law sensitivity of direct microscopy and the slow growth of the organism challenge the laboratory diagnosis. We present the case of a skin abscess in an immunocompetent man caused by Nocardia brasiliensis. Diagnosis was made by cultivation and 16S rRNA sequencing. Using indirect immunofluorescence and Western blot, a strong antibody response to the N. brasiliensis isolate could be demonstrated. Serological tests might therefore be useful for the diagnosis and management of nocardial infections, copyright (R) 2000 S. Karger AG, Basel

    Interference microscopy delineates cellular proliferations on flat mounted internal limiting membrane specimens.

    Get PDF
    Aim: To demonstrate that interference microscopy of flat mounted internal limiting membrane specimens clearly delineates cellular proliferations at the vitreomacular interface. Methods: ILM specimens harvested during vitrectomy were fixed in glutaraldehyde 0.05% and paraformaldehyde 2% for 24 h (pH 7.4). In addition to interference microscopy, immunocytochemistry using antibodies against glial fibrillar acidic protein (GFAP) and neurofilament (NF) was performed. After washing in phosphatebuffered saline 0.1 M, the specimens were flat-mounted on glass slides without sectioning, embedding or any other technique of conventional light microscopy. A cover slide and 49,6-diamidino-2-phenylindole (DAPI) medium were added to stain the cell nuclei. Results: Interference microscopy clearly delineates cellular proliferations at the ILM. DAPI stained the cell nuclei. Areas of cellular proliferation can be easily distinguished from ILM areas without cells. Immunocytochemistry can be performed without changing the protocols used in conventional microscopy. Conclusion: Interference microscopy of flat mounted ILM specimens gives new insights into the distribution of cellular proliferations at the vitreomacular interface and allows for determination of the cell density at the ILM. Given that the entire ILM peeled is seen en face, the techniques described offer a more reliable method to investigate the vitreoretinal interface in terms of cellular distribution compared with conventional microscopy

    Whole Farm Modeling of the Effect of Risk on Optimal Tillage and Nitrogen Fertilizer Intensity

    Get PDF
    nitrogen, tillage, risk, risk aversion, Crop Production/Industries, Farm Management, Production Economics, Risk and Uncertainty,

    Economic analysis of site-specific wheat management with respect to grain quality and separation of the different quality fractions

    Get PDF
    The paper analyzes site-specific and uniform management options for wheat production with respect to grain quality. Besides site-specific fertilization the economic potential of segregation of different grain qualities is the subject of this paper. Yield and quality response to fertilizer were taken from field experiments in Germany to calculate site-specific response functions. The economic optima were calculated for uniform management (UM), complete separate management of the subfields (SM), site-specific fertilization (SSF) and grain segregation (GS) for different price structures according to different grain qualities. The results show that over all price structures, highest economic potential was found with SM or SSF compared to UM. However, these management practices require the possibility to separately manage subfields (SM) or specific fertilization equipment and fertilizer algorithms (SSM). GS did not have a higher economic potential than UM. However, if required grain qualities are not met for the whole field, GS can substantially reduce profit losses by separating part of the grains and selling them at higher prices. This may save the farmer more than 50 € ha–1. In situations where higher grain qualities could only be obtained at the expense of yield penalties, premiums for higher grain qualities can create incentives for fertilizer rates beyond the yield maximizing rate. GS technologies may even boost this effect.site-specific nitrogen management, wheat quality, grain segregation., Crop Production/Industries,

    Origin of spatial variations of scattering polarization in the wings of the Ca {\sc i} 4227 \AA line

    Full text link
    Polarization that is produced by coherent scattering can be modified by magnetic fields via the Hanle effect. According to standard theory the Hanle effect should only be operating in the Doppler core of spectral lines but not in the wings. In contrast, our observations of the scattering polarization in the Ca {\sc i} 4227 \AA line reveals the existence of spatial variations of the scattering polarization throughout the far line wings. This raises the question whether the observed spatial variations in wing polarization have a magnetic or non-magnetic origin. A magnetic origin may be possible if elastic collisions are able to cause sufficient frequency redistribution to make the Hanle effect effective in the wings without causing excessive collisional depolarization, as suggested by recent theories for partial frequency redistribution with coherent scattering in magnetic fields. To model the wing polarization we apply an extended version of the technique based on the "last scattering approximation". This model is highly successful in reproducing the observed Stokes Q/IQ/I polarization (linear polarization parallel to the nearest solar limb), including the location of the wing polarization maxima and the minima around the Doppler core, but it fails to reproduce the observed spatial variations of the wing polarization in terms of magnetic field effects with frequency redistribution. This null result points in the direction of a non-magnetic origin in terms of local inhomogeneities (varying collisional depolarization, radiation-field anisotropies, and deviations from a plane-parallel atmospheric stratification).Comment: Accepted in May 2009 for publication in The Astrophysical Journa

    Sequential epiretinal membrane removal with internal limiting membrane peeling in brilliant blue G-assisted macular surgery

    Get PDF
    Purpose To assess the selectivity of brilliant blue G (BBG) staining by analysing the morphological components of unstained and stained tissue obtained during epiretinal membrane (ERM) removal with internal limiting membrane (ILM) peeling in BBG-assisted macular surgery. Methods Twenty-six surgical specimens were removed from 13 eyes with epiretinal gliosis during vitrectomy using BBG for ERM and ILM peeling. We included eyes with idiopathic macular pucker, idiopathic macular hole and vitreomacular traction syndrome. The dye was injected into the fluid-filled globe. Unstained and stained epiretinal tissue was harvested consecutively and placed into separate containers. All specimens were processed for conventional transmission electron microscopy. Results The first surgical specimen of all eyes showed no intraoperative staining with BBG and corresponded to masses of cells and collagen. The second surgical specimen demonstrated good staining characteristics and corresponded to the ILM in all patients included. In seven eyes, the ILM specimens were seen with minor cell proliferations such as single cells or a monolayer of cells. Myofibroblasts, fibroblasts and astrocytes were present. In five cases, native vitreous collagen fibrils were found at the ILM. In six of the eyes, ILM specimens were blank. Conclusion Our clinicopathological correlation underlines the selective staining properties of BBG. The residual ILM is selectively stained by BBG even when a small amount of cells and collagen adheres to its vitreal side. To reduce the retinal exposure to the dye, the surgeon might choose to remove the ERM without using the dye, followed by a BBG injection to identify residual ILM

    Measuring the Hidden Aspects of Solar Magnetism

    Full text link
    2008 marks the 100th anniversary of the discovery of astrophysical magnetic fields, when George Ellery Hale recorded the Zeeman splitting of spectral lines in sunspots. With the introduction of Babcock's photoelectric magnetograph it soon became clear that the Sun's magnetic field outside sunspots is extremely structured. The field strengths that were measured were found to get larger when the spatial resolution was improved. It was therefore necessary to come up with methods to go beyond the spatial resolution limit and diagnose the intrinsic magnetic-field properties without dependence on the quality of the telescope used. The line-ratio technique that was developed in the early 1970s revealed a picture where most flux that we see in magnetograms originates in highly bundled, kG fields with a tiny volume filling factor. This led to interpretations in terms of discrete, strong-field magnetic flux tubes embedded in a rather field-free medium, and a whole industry of flux tube models at increasing levels of sophistication. This magnetic-field paradigm has now been shattered with the advent of high-precision imaging polarimeters that allow us to apply the so-called "Second Solar Spectrum" to diagnose aspects of solar magnetism that have been hidden to Zeeman diagnostics. It is found that the bulk of the photospheric volume is seething with intermediately strong, tangled fields. In the new paradigm the field behaves like a fractal with a high degree of self-similarity, spanning about 8 orders of magnitude in scale size, down to scales of order 10 m.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Scattering Polarization and Hanle Effect in Stellar Atmospheres with Horizontal Inhomogeneities

    Full text link
    Scattering of light from an anisotropic source produces linear polarization in spectral lines and the continuum. In the outer layers of a stellar atmosphere the anisotropy of the radiation field is typically dominated by the radiation escaping away, but local horizontal fluctuations of the physical conditions may also contribute, distorting the illumination and hence, the polarization pattern. Additionally, a magnetic field may perturb and modify the line scattering polarization signals through the Hanle effect. Here, we study such symmetry-breaking effects. We develop a method to solve the transfer of polarized radiation in a scattering atmosphere with weak horizontal fluctuations of the opacity and source functions. It comprises linearization (small opacity fluctuations are assumed), reduction to a quasi-planeparallel problem through harmonic analysis, and numerical solution by generalized standard techniques. We apply this method to study scattering polarization in atmospheres with horizontal fluctuations in the Planck function and opacity. We derive several very general results and constraints from considerations on the symmetries and dimensionality of the problem, and we give explicit solutions of a few illustrative problems of especial interest. For example, we show (a) how the amplitudes of the fractional linear polarization signals change when considering increasingly smaller horizontal atmospheric inhomogeneities, (b) that in the presence of such inhomogeneities even a vertical magnetic field may modify the scattering line polarization, and (c) that forward scattering polarization may be produced without the need of an inclined magnetic field. These results are important to understand the physics of the problem and as benchmarks for multidimensional radiative transfer codes.Comment: 27 pages, 13 figures, to appear in Ap
    • …
    corecore