709 research outputs found
The role of structural disorder in cell cycle regulation, related clinical proteomics, disease development and drug targeting
Understanding the molecular mechanisms of the regulation of cell cycle is a central issue in molecular cell biology, due to its fundamental role in the existence of cells. The regulatory circuits that make decisions on when a cell should divide are very complex and particularly subtly balanced in eukaryotes, in which the harmony of many different cells in an organism is essential for life. Several hundred proteins are involved in these processes, and a great deal of studies attests that most of them have functionally relevant intrinsic structural disorder. Structural disorder imparts many functional advantages on these proteins, and we discuss it in detail that it is involved in all key steps from signaling through the cell membrane to regulating transcription of proteins that execute timely responses to an ever-changing environment. © Informa Uk, Ltd
Histamine release after intravenous application of short-acting hypnotics. A comparison of etomidate, Althesin (CT1341) and propanidid
The subject of histamine release was investigated in 16 volunteers by means of plasma histamine determination after the administration of etornidate, Althesin, propanidid, and Cremophor EL. Althesin and propanidid caused release of histamine in various degrees of frequency. Blood pressure changes were rather pronounced with both anaesthetic agents; tachycardia reached its maximum in the first and second minute, which seems to be an argument against histamine release as the underlying cause of this reaction. Histamine was, indeed, only released to such an extent (with the exception of one borderline case) that no clinical symptoms other than secretion of gastric juice and erythema were to be expected. After the application of etomidate and Cremophor EL an increase in plasma histamine was not detectable. Changes in the differential blood picture in terms of a decrease in basophils only occurred after Althesin and propanidid; not, however, after etomidate and Cremophor EL. Etomidate is, therefore, the first hypnotic drug for intravenous application which is unlikely to cause chemical histamine release
Influence of steep Trendelenburg position and CO2 pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy
The steep (40 degrees) Trendelenburg position optimizes surgical exposure during robotic prostatectomy. The goal of the current study was to investigate the combined effect of this position and CO2 pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during these procedures.
Physiological data were recorded during the whole surgical procedure in 31 consecutive patients who underwent robotic endoscopic radical prostatectomy under general anaesthesia. Heart rate, mean arterial pressure, central venous pressure, Sp(o2), Pe'(co2), P-Plat, tidal volume, compliance, and minute ventilation were monitored and recorded. Arterial samples were obtained to determine the arterial-to-end-tidal CO2 tension gradient. Continuous regional cerebral tissue oxygen saturation (Sct(o2)) was determined by near-infrared spectroscopy.
Although patients were in the Trendelenburg position, all variables investigated remained within a clinically acceptable range. Cerebral perfusion pressure (CPP) decreased from 77 mm Hg at baseline to 71 mm Hg (P=0.07), and Sct(o2) increased from 70% to 73% (P < 0.001). Pe'(co2) increased from 4.12 to 4.79 kPa (P < 0.001) and the arterial-to-Pe'(co2) tension difference increased from 1.06 kPa in the normal position to a maximum of 1.41 kPa (P < 0.001) after 2 h in the Trendelenburg position.
The combination of the prolonged steep Trendelenburg position and CO2 pneumoperitoneum was well tolerated. Haemodynamic and pulmonary variables remained within safe limits. Regional cerebral oxygenation was well preserved and CPP remained within the limits between which cerebral blood flow is usually considered to be maintained by cerebral autoregulation
Whole-Body Barometric Plethysmography Characterizes Upper Airway Obstruction in 3 Brachycephalic Breeds of Dogs.
BACKGROUND: A novel test using whole-body barometric plethysmography (WBBP) was developed recently to diagnose brachycephalic obstructive airway syndrome (BOAS) in unsedated French bulldogs. HYPOTHESIS/OBJECTIVES: The hypotheses of this study were: (1) respiratory characteristics are different between healthy nonbrachycephalic dogs and brachycephalic dogs; and among pugs, French bulldogs, and bulldogs; and (2) obesity and stenotic nares are risk factors for BOAS. The main objective was to establish a diagnostic test for BOAS in these 3 breeds. ANIMALS: A total of 266 brachycephalic dogs (100 pugs, 100 French bulldogs, and 66 bulldogs) and 28 nonbrachycephalic dogs. METHODS: Prospective study. Exercise tolerance tests with respiratory functional grading, and WBBP were performed on all dogs. Data from WBBP were associated with functional grades to train quadratic discriminant analysis tools to assign dogs to BOAS+ and BOAS- groups. A BOAS index (0-100%) was calculated for each dog. Receiver operating characteristic (ROC) curves were used to evaluate classification ability. RESULTS: Minute volume was decreased significantly in asymptomatic pugs (P = .009), French bulldogs (P = .026), and bulldogs (P < .0001) when compared to nonbrachycephalic controls. Respiratory characteristics were different among breeds and affected dogs had a significant increase in trace variation. The BOAS index predicted BOAS status for each breed with 94-97% (95% confidence interval [CI], 88.9-100%) accuracy (area under the ROC curve). Both obesity (P = .04) and stenotic nares (P = .004) were significantly associated with BOAS. CONCLUSIONS AND CLINICAL IMPORTANCE: The WBBP can be used as a clinical tool to diagnose BOAS noninvasively and objectively.This study is supported by a grant from the Kennel Club Charitable Trust (KCCT), no. RG71960.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/jvim.1393
Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque
There are substantial differences across species in the organisation and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration 'thin' spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the expression of Kv3.1b in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin-positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labelled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32-postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons
Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro
Hereditary sensory neuropathy type 1 (HSN-1) is a peripheral neuropathy most frequently caused by mutations in the SPTLC1 or SPTLC2 genes, which code for two subunits of the enzyme serine palmitoyltransferase (SPT). SPT catalyzes the first step of de novo sphingolipid synthesis. Mutations in SPT result in a change in enzyme substrate specificity, which causes the production of atypical deoxysphinganine and deoxymethylsphinganine, rather than the normal enzyme product, sphinganine. Levels of these abnormal compounds are elevated in blood of HSN-1 patients and this is thought to cause the peripheral motor and sensory nerve damage that is characteristic of the disease, by a largely unresolved mechanism. In this study, we show that exogenous application of these deoxysphingoid bases causes dose- and time-dependent neurotoxicity in primary mammalian neurons, as determined by analysis of cell survival and neurite length. Acutely, deoxysphingoid base neurotoxicity manifests in abnormal Ca2+ handling by the endoplasmic reticulum (ER) and mitochondria as well as dysregulation of cell membrane store-operated Ca2+ channels. The changes in intracellular Ca2+ handling are accompanied by an early loss of mitochondrial membrane potential in deoxysphingoid base-treated motor and sensory neurons. Thus, these results suggest that exogenous deoxysphingoid base application causes neuronal mitochondrial dysfunction and Ca2+ handling deficits, which may play a critical role in the pathogenesis of HSN-1
Computers from plants we never made. Speculations
We discuss possible designs and prototypes of computing systems that could be
based on morphological development of roots, interaction of roots, and analog
electrical computation with plants, and plant-derived electronic components. In
morphological plant processors data are represented by initial configuration of
roots and configurations of sources of attractants and repellents; results of
computation are represented by topology of the roots' network. Computation is
implemented by the roots following gradients of attractants and repellents, as
well as interacting with each other. Problems solvable by plant roots, in
principle, include shortest-path, minimum spanning tree, Voronoi diagram,
-shapes, convex subdivision of concave polygons. Electrical properties
of plants can be modified by loading the plants with functional nanoparticles
or coating parts of plants of conductive polymers. Thus, we are in position to
make living variable resistors, capacitors, operational amplifiers,
multipliers, potentiometers and fixed-function generators. The electrically
modified plants can implement summation, integration with respect to time,
inversion, multiplication, exponentiation, logarithm, division. Mathematical
and engineering problems to be solved can be represented in plant root networks
of resistive or reaction elements. Developments in plant-based computing
architectures will trigger emergence of a unique community of biologists,
electronic engineering and computer scientists working together to produce
living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing
inspired by physics, chemistry and biology. Essays presented to Julian Miller
on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew
Adamatzky (Springer, 2017
Functional studies of signaling pathways in peri-implantation development of the mouse embryo by RNAi.
BACKGROUND: Studies of gene function in the mouse have relied mainly on gene targeting via homologous recombination. However, this approach is difficult to apply in specific windows of time, and to simultaneously knock-down multiple genes. Here we report an efficient method for dsRNA-mediated gene silencing in late cleavage-stage mouse embryos that permits examination of phenotypes at post-implantation stages. RESULTS: We show that introduction of Bmp4 dsRNA into intact blastocysts by electroporation recapitulates the genetic Bmp4 null phenotype at gastrulation. It also reveals a novel role for Bmp4 in the regulation the anterior visceral endoderm specific gene expression and its positioning. We also show that RNAi can be used to simultaneously target several genes. When applied to the three murine isoforms of Dishevelled, it leads to earlier defects than previously observed in double knock-outs. These include severe delays in post-implantation development and defects in the anterior midline and neural folds at headfold stages. CONCLUSION: Our results indicate that the BMP4 signalling pathway contributes to the development of the anterior visceral endoderm, and reveal an early functional redundancy between the products of the murine Dishevelled genes. The proposed approach constitutes a powerful tool to screen the functions of genes that govern the development of the mouse embryo.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Enhanced Expression of TRAP1 Protects Mitochondrial Function in Motor Neurons under Conditions of Oxidative Stress
TNF‐receptor associated protein (TRAP1) is a cytoprotective mitochondrial‐specific member of the Hsp90 heat shock protein family of protein chaperones that has been shown to antagonise mitochondrial apoptosis and oxidative stress, regulate the mitochondrial permeability transition pore and control protein folding in mitochondria. Here we show that overexpression of TRAP1 protects motor neurons from mitochondrial dysfunction and death induced by exposure to oxidative stress conditions modelling amyotrophic lateral sclerosis (ALS). ALS is a fatal neurodegenerative disease in which motor neurons degenerate, leading to muscle weakness and atrophy and death, typically within 3 years of diagnosis. In primary murine motor neurons, shRNAmediated knockdown of TRAP1 expression results in mitochondrial dysfunction but does not further exacerbate damage induced by oxidative stress alone. Together, these results show that TRAP1 may be a potential therapeutic target for neurodegenerative diseases such as ALS, where mitochondrial dysfunction has been shown to be an early marker of pathogenesis
Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.
Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification
- …
