
The role of structural disorder
in cell cycle regulation,

5related clinical proteomics,
disease development and
drug targeting
Expert Rev. Proteomics 12(3), 000–000 (2015)

10

AQ2 Agnes Tantos1,
Lajos Kalmar2 and
Peter Tompa*1,2

1Institute of Enzymology, Research

Centre for Natural Sciences of the

Hungarian Academy of Sciences,

Budapest, Hungary
2VIB Department of Structural Biology,

Vrije Universiteit Brussel, Brussels,

Belgium

*Author for correspondence:

peter.tompa@vib-vub.be

Understanding the molecular mechanisms of the regulation of cell cycle is a central issue in
molecular cell biology, due to its fundamental role in the existence of cells. The regulatory
circuits that make decisions on when a cell should divide are very complex and particularly
subtly balanced in eukaryotes, in which the harmony of many different cells in an organism is

15essential for life. Several hundred proteins are involved in these processes, and a great deal of
studies attests that most of them have functionally relevant intrinsic structural disorder.
Structural disorder imparts many functional advantages on these proteins, and we discuss it
in detail that it is involved in all key steps from signaling through the cell membrane to
regulating transcription of proteins that execute timely responses to an ever-changing

20environment.
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Cell cycle: the cornerstone of

multicellular life

Every postembryonic eukaryotic cell goes
through the distinct phases of cell cycle,

30G1, S, G2 and M. G1, S and G2 are com-
monly termed as interphase during which the
cells prepare for division in M phase. Progres-
sion through these phases is crucial for the sta-
bility of the cells, and its correct regulation is

35the cornerstone of the integrity of the whole
organism. The detection and repair of DNA
damage are as important part of this as the
prevention of uncontrolled cell division.

Cell cycle regulation has been one of the
40most studied biological processes for decades,

and many key molecular mechanisms have
been revealed [1,2]. Understanding the struc-
tural background of the most important regu-
latory proteins highlighted the importance of

45intrinsic protein disorder in the regulation of
cell cycle progression [1].

Over the past few decades, there has been
increasing awareness that a significant number

of proteins are able to fulfill important func-
tions without possessing a stable three-
dimensional structure [3,4]. These proteins,
termed intrinsically disordered proteins or
regions (IDPs/IDRs), participate in many reg-
ulatory processes [4,5] and are also the main
players in cell cycle regulation. IDPs function
either as disordered polypeptide chains (entro-
pic chains) or via molecular recognition (as
shorter or longer binding motifs), which
entails manifold functional advantages, such as
enabling weak but specific binding, rapid
interactions, adaptability to the binding part-
ner and subtle regulation by post-translational
modifications [1,3,6]. In this article, we take it
under scrutiny how regulation of cell cycle
benefits from these functional features.

Cell-cycle checkpoints

Checkpoints in the cell cycle serve as means
for the cell to detect and possibly repair dam-
aged DNA or other cellular damage before
continuing to the next phase. Arrest of cell
cycle progression is achieved through the
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activity of the key regulator proteins. These cell cycle check-
50 points include the transitions not only from G1 to S and

G2 to M but also in S phase and mitosis [7]. The G1-S phase
checkpoint is termed restriction point, where the phosphory-
lated retinoblastoma protein (Rb) releases the transcription fac-
tor E2F, which in turn activates many S-phase genes, including

55 those for cyclins D, A and E. The key mediators of Rb phos-
phorylation are cyclin-dependent kinase (CDK) 4- or 6/cyclin
D complexes [8], and while the release of E2F directly leads to
entry into S phase, cyclin-E kinase activity contributes to the
cell cycle progression signal [9].

60 As the key regulators of cyclin-CDK activity, CDK inhibi-
tors (CKIs) play prominent role in the integrity of the G1-S
checkpoint. Apart from inhibiting CDK activity, they also act
as adaptors to promote CDK–cyclin complex assembly, giving
them a dual role in cell cycle regulation (moonlighting) and are

65 themselves under close transcriptional control. p21Cip1 is con-
trolled by p53, thus is a key player in DNA damage-induced
G1 arrest [7]. p27Kip1, on the other hand, is regulated by
DNA-damage-independent pathways, such as growth factor
signaling, and is considered intrinsic G1 regulator.

70 Members of the other CKI family, INK4 (p16INK4a,
p15INK4b, p18INK4c and p19INK4d), are specific for
CDK4 and CDK6 and have roles in the early G1 phase.
p16INK4a acts upstream of the Rb pathway and is frequently
inactivated in cancer. P14ARF, a different CKI protein

75 encoded by the same gene as p16INK4a, can induce cell cycle
arrest both in G1 and G2 through interaction with
MDM2 and the resulting p53 activation [10].

p53 itself is involved in the G1-S checkpoint because it is
involved in various signal transduction pathways that lead to

80 cell cycle arrest or apoptosis as a response to DNA damage.
p53 also regulates the G2–M checkpoint through induction of
14-3-3s, a protein that sequesters CDK1 in the cytoplasm.
14-3-3s is a component of the G2–M checkpoint because its
overexpression leads to G2 arrest [11]. Other, p53-independent

85 mechanisms also exist at the G2-M checkpoint, for example,
through post-translational modifications of CDK1, keeping it
in its inactive form through inhibitory phosphorylation [12].

The mechanisms regulating the S-phase DNA damage check-
point are less deeply understood and differ from the other cell

90 cycle checkpoints in many important features. Unlike the other
checkpoints, it reduces DNA synthesis in the presence of dam-
aged DNA instead of completely halting it and checkpoint
activity is not directly related to DNA damage resistance [13].
S-phase DNA damage checkpoint can be divided to two major

95 processes: the inhibition of origin firing and the slowing of rep-
lication fork progression. As a response to ionizing radiation,
ATM kinase activates Chk2, which phosphorylates Cdc25A
promoting its degradation [14]. UV radiation also leads to the
rapid degradation of Cdc25A through activation of Chk1 [15],

100 preventing dephosphorylation and activation of the Cdk2-Cy-
clinE complex. In the absence of Cdk2 activity origin, firing is
inhibited due to the failed loading of Cdc45 and AND-1/
CTF4 on origins [16]. The slowing of the replication fork is

more of a local response to DNA damage. The proposed
105mechanism is that forks do not actually slow down, but their

replication is paused at the sites of damage [13], manifesting in
an overall slower fork progression. Both ATR and Chk1 are
required for the fork slowing response, but additional compo-
nents are also necessary in vertebrate cells. The timeless-timeless

110interactingprotein (Tim-Tipin) complex is a Chk1 target, and
Tipin is required for UV-induced reduction of fork progres-
sion [17]. Checkpoint kinases are active under unperturbed con-
ditions, suggesting a regulatory normal cell cycle [16] and they
are essential in embryonic development [18,19].

115Accurate chromosome segregation is also monitored by the
cells, at the spindle assembly checkpoint (SAC) by controlling for
microtubule-kinetochore attachment defects [20]. The key pro-
teins that control SAC are protein kinases Bub1, BubR1 and
Mps1. Bub1 recruits several checkpoint components to the kinet-

120ochore when checkpoint conditions are unsatisfied, but it is also
important for the assembly of the inner centromere. BubR1 is
required for the establishment of proper kinetochore-microtubule
attachment and chromosome alignment. Together with Bub3,
Mad2 and Cdc20, BubR1 forms a part of the mitotic checkpoint

125complex that inhibits the E3 ubiquitin ligase activity of the
anaphase-promoting complex (cyclosome or APC/C) toward
securin and cyclinB1. When all checkpoint conditions are
fulfilled, APC/C inhibition is released, allowing chromosome
separation and mitotic progression [20].

130Functional modes of IDPs in signaling and cell cycle

regulation

As outlined below, many cell cycle proteins abound in struc-
tural disorder. IDPs exist and function in a disordered ensem-
ble state [21,22], which either directly represents their functional

135state or from which they undergo induced folding upon
encountering their binding partner. The combination of these
two distinct functional modes imparts many advantages on
IDPs, due to which they are frequently used in signaling and
regulation in the cell. In terms of their molecular mechanism

140of action, they often affect the activity of their binding partner
(effectors) or assist interaction, localization and assembly of
complexes of other proteins (assemblers) [4,23]. We will outline
next these functional types of disordered proteins in cell cycle.

Effectors

145Due to their key importance in cell cycle regulation, the activ-
ity of different Cdk/cyclin complexes is strictly controlled, pri-
marily by CKIs. The most thoroughly studied group of CKIs
is the CIP/KIP family that comprises p21Cip1, p27Kip1 and
p57Kip2 [24]. The three proteins share a conserved, 60-residue-

150long N-terminal kinase inhibitory domain and nuclear localiza-
tion signals within their C-terminal domains [24]. Other, diver-
gent sequential features suggest their distinct functions and
regulation. The CIP/KIP proteins are IDPs [2], and although
they inhibit multiple Cdk/cyclin complexes, they also facilitate

155the assembly and nuclear transport of the Cdk 4(6)/cyclin-D
complexes [25,26]. The kinase inhibitory domain can be divided
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into three subdomains: D1, LH and D2, with D1 binding to
the cyclin and D2 to the Cdk subunit. It is the highly flexible
LH subunit that confers adaptability to different Cdk/cyclin

160 complexes [27], enabling a wrapping-around type of binding,
termed a ‘molecular staple’ [28]. The first recognition and bind-
ing step, when subdomain D1 binds to its cyclin partner
through the RXL motif is accelerated by the fly casting [29]

mechanism, followed by the slower binding of the D2 subdo-
165 main to the Cdk subunit [28].

p16INK4a and p14ARF are different effectors encoded in
alternative, but partially overlapping reading frames by the
INK4a/ARF locus [30]. While p16INK4a is a globular protein,
p14ARF is mostly disordered in solution and its N-terminal dis-

170 ordered region binds Mdm2 in an induced folding process [31].
P14ARF is a potent regulator of the cell cycle that is not
expressed in normal cells, but its expression is activated upon
exposure to mitogenic signals [32,33]. It binds to Mdm2, inhibits
the cytoplasmic transport of p53 and reduces the ubiquitin ligase

175 activity of Mdm2 [31]. Interestingly, the region of Mdm2 recog-
nized by p14ARF is also disordered in the unbound form, that is,
the interaction has to proceed by mutual induced folding [31],
possibly increasing the specificity of the interaction.

A central player in cell-cycle regulation is p53, which is acti-
180 vated by DNA damage, heat sock and other stress signals [34].

Activation of p53 results in changes of several genes that inter-
vene in the progression of the cell cycle leading to cell cycle arrest
and apoptosis [35]. The 393 amino acid-long protein consists of
an intrinsically disordered N-terminal DNA-binding domain, a

185 proline-rich domain, a central DNA-binding domain and a
C-terminal tetramerization domain. The N-terminal domain is
involved in the binding of transcriptional coactivators and core-
pressors and is essential for binding with Mdm2 [35], by induced
folding [36]. The DNA-binding domain contains a disordered

190 loop that is important for p53 function. Flexibility of the linker
enables fast dissociation from nontarget DNA sequences and sta-
ble complex formation with the target sequences [37].

Assemblers

An important functional property of the IDPs is their large sur-
195 face available for interaction due to which they are ideal dock-

ing platforms for the assembly of large complexes [38]. During
the progression of the cell cycle, many such complexes form.

One example of these assemblers is a component of SAC.
Proper SAC function requires communication with the kineto-

200 chore complex that connects centromeric DNA to microtubules.
The structural core of the kinetochore is the KMN
(Knl1-Mis12-Ndc80) network, which constitutes a docking
platform for the kinetochore recruitment of SAC components [39].
By providing large interaction surfaces and a variety of functional

205 motifs, Knl1 is responsible for the recruitment of kinetochore
proteins and proteins implicated in the SAC [40]. Knl1 uses its
C-terminal region for its localization to the kinetochore [41] and
for the interaction with Nsl1 (a component of the
Mis12 complex) [42] but can also bind Zwint, a kinetochore

210 protein [43]. The N-terminal SILK and RVSF motifs of

Knl1 recognize and directly bind protein phosphatase PP1 [44]

that mediates SAC silencing [45]. PP1 binding supposedly inhibits
the recruitment of Bub1 and BubR1 to Knl1 [46]. Through bind-
ing with Bub1, Knl1 indirectly mediates the recruitment of

215PP2A, which is important for stabilizing kinetochore-
microtubule binding [47]. Another interaction motif, MELT is
found in the N-terminal and middle regions of Knl1 [39], in vary-
ing numbers. The MELT motif is phosphorylated by the mitotic
checkpoint kinase Msp1, and this modification is necessary for

220the recruitment of Bub1 and Bub3 to the kinetochore [46].
Bub1 and BubR1 binding localizes to the N terminus of Knl1,
through two KI motifs [39]. The C-terminal part of Knl1 contains
the structured AQ3RWD domain and a coiled coil regions [48] that
mediate Nsl1 and Zwint binding, respectively [39].

225Mediator of DNA Damage Checkpoint 1 (MDC1) is also a
large, mostly disordered protein that functions through interact-
ing with multiple partners to participate in various aspects of
DNA damage response. This protein is recruited to the site of
DNA double-strand breaks (DSBs), and together with RNF8 is

230necessary for the recruitment of BRCA1 and 53BP1 [49]. The
protein contains an N-terminal FHA domain, which mediates
phospho-protein interaction, a central Pro/Ser/Thr-rich repeat
domain (PST repeat) and a C-terminal tandem BRCT (tBRCT)
domain, implicated in protein–protein interactions [49]. The PST

235motif, an imperfect repetitive motif of about 41 amino acids,
does not appear in other proteins [50] and human
MDC1 contains 13 full PST repeats, five more than the murine
MDC1; the PST repeats act as protein binding modules [51].
Binding of partners such as g-H2AX, histone H2AX and

24053BP1 is important for the activation of cell cycle check-
points [49,52]. MDC1 also interacts with several components of
the APC/C through the FHA, tBRCT and PST repeat domains
of MDC1 [53] Thus, by affecting APC/C activity, MDC1 may
have a role in the normal transition of cells from metaphase to

245anaphase, independent of the DNA damage or SACs [49].
Breast cancer type 1 susceptibility protein (BRCA1) is a

1863 amino acid-long multifunctional protein implicated in
DNA DSB repair, transcription coupled repair, cell cycle check-
point control, centrosome duplication, transcription regulation,

250DNA damage signaling, growth regulation and the induction of
apoptosis [54]. Despite the large size of the protein, only two, rela-
tively small conserved domains, were identified and characterized
in its sequence. The N-terminal RING finger domain forms a
heterodimer with BARD1, resulting in an active E3 ubiquitin

255ligase complex [55], and the C terminus contains two tandem
BRCT domains [56]. The central region of the protein is shown
to be largely disordered [54] and apart from mediating the interac-
tion with many proteins, it contains a number of DNA-damage-
induced phosphorylation sites [57]. BRCA1 participates in four

260major complexes to repair DSBs. The first complex contains
RAP80, MERIT40, BRCC36/45 and Abraxas and is involved in
G2/M checkpoint arrest after DNA damage. The second, con-
taining TopB1 and BACH1 along with BRCA1 is involved in S-
phase checkpoint activation [58]. The third complex formed

265between BRCA1, Mre11, Rad50 and Nbs1 is involved in DSB
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end resection [59], and fourth complex of BRCA1, BRCA2,
PALB2 and Rad51 facilitates sister chromatid invasion [60]. Many
of these interactions were mapped to the disordered central
region of BRCA1, underlining the importance of this region of

270 the protein [54].

Regulation of cell cycle by PTMs: targeting disordered

regions

Phosphorylation is the most well-known post-translational modi-
fication that participates in the regulation of almost all cellular

275 processes. It has been shown earlier that phosphorylation sites
preferentially occur in disordered regions, where they are accessi-
ble for the modifying enzyme [61]. An elegant study aiming at the
investigation of the dynamics of phosphorylation revealed that
the majority of phosphorylation sites that are linked with the cell

280 cycle are found in disordered segments [62]. These segments differ
from the ordered segments not only in their accessibility but also
a higher evolutionary variability and underline the general impor-
tance of protein disorder in the regulation of the cell cycle. Phos-
phorylation can play a role in the activation of a specific protein,

285 exemplified by the p27Kip1, where the flexibility of the segment
that blocks Cdk enables the exposure and subsequent phosphory-
lation of a tyrosine residue. This leads to partial activation of the
Cdk, which can phosphorylate p27 at another residue resulting
in its degradation and full activation of Cdk [63]. On the other

290 hand, changes in phosphorylation pattern may increase the sensi-
tivity and robustness of the cellular response and may promote
the switch-like behavior [64]. This is achieved by the multiple
phosphorylation sites on many proteins, giving rise to the idea
that it is the cluster of phosphorylation sites that defines the

295 function [65].
Progression of the cell cycle is an ordered and directional pro-

cess, meaning that each step occurs in a sequential fashion. This
directional course of events is achieved through the sequential
activation of the key regulatory proteins of the cell cycle, cyclins

300 and CDKs [2], which form heterodimers to perform phosphoryla-
tion of various downstream targets, thus orchestrating coordi-
nated entry into the next phase of the cell cycle. CDKs are
constitutively expressed in cells, whereas cyclins are synthesized at
specific stages of the cell cycle, in response to various molecular

305 signals. Different Cdk/cyclin complexes control entry into
G1 phase (Cdk4 and Cdk6 paired with D-type cyclins) and pro-
gression from G1 to S phase (Cdk2 paired with A- and E-type
cyclins), and direct experimental evidence suggests the role of
structural disorder in cyclin function.

310 Cdk activity is regulated by the Cip/Kip protein family, also
termed as CKIs. The Cip/Kip family members, including p21,
p27 and p57, associate with the full repertoire of Cdk/cyclin
complexes and regulate their kinase activities at the cell cycle
checkpoints [2], and are fully disordered proteins.

315 IDPs in cell cycle: disorder established

IDPs established in cell cycle

Besides the foregoing examples, structural disorder is estab-
lished in many other cell-cycle regulatory proteins (TABLES 1 & 2).

Securin regulates separase, the protease responsible for the
320physical separation of sister chromatids [66]. Securin is a disor-

dered, dual function protein [67], which not only holds separase
in the inactive state until the onset of anaphase but also acts as
a chaperone of separase activity [68,69].

Sic1, the disordered kinase (Cdk) inhibitor of budding yeast,
325is responsible for setting the timing of cell cycle progression [70].

The interaction of Sic1 with the SCF ubiquitin ligase subunit
Cdc4 in yeast is a model example of an ultrasensitive regulatory
system based on structural disorder [71]. When Sic1 is phosphory-
lated on any six (or more) of nine sites, it binds to a

330WD40 domain in Cdc4, which leads to the ubiquitination and
degradation of Sic1 [64], bringing about the development of
B-type cyclin–CDK activity and the onset of DNA replication.

Mdm2 is also a central player in the regulation of the cell cycle
as mentioned before in various aspects of this review. Its interac-

335tion with P14ARF falls to an intrinsically disordered region of
Mdm2 and its disorder-to-order transition in the interaction con-
tributes to the specificity of the binding interaction [31].

Viral proteins often take advantage of the specific features of
disordered regions to override cell cycle control to enable the

340transcription of viral genes [1]. By incorporating different bind-
ing motifs within its disordered N-terminal region, the adeno-
virus oncoprotein early region 1A (E1A) [72] can bind
numerous cellular proteins and organize them into higher-order
complexes that disrupt regulatory networks and reprogram gene

345expression [1]. Human papillomavirus E7 protein uses its disor-
dered C-terminal region to bind and induce degradation of Rb,
forcing infected cells to enter S-phase [73].

Prediction of disorder in cell-cycle associated proteins

While the human proteome contains high levels of disorder, it
350was previously shown that structural disorder is particularly abun-

dant in certain regulatory processes. In FIGURE 1, we compare the
frequency distribution of proteins with different levels of disorder
in the complete human proteome (UniProt/SwissProt human
protein dataset, 2015 February, n = 20198) and in proteins anno-

355tated to cell cycle (filtered from SwissProt using KW-0131,
n = 619). Structural disorder was predicted by using IUPred algo-
rithm [74,75]. Proteins annotated to cell cycle have significantly dif-
ferent frequency distribution from all human protein, with
significant difference in the first group (0–20% disorder content),

360the mostly globular proteins being under-represented, and in sec-
ond and fourth groups (20–80% disorder content), where the
partly disordered proteins are over-represented. This distribution
bias shows a strong association of structural disorder with cell
cycle. To rationalize this finding, we also extracted the typical

365functional annotations (based on Gene Ontology functional
annotations) for every category among the cell-cycle-related pro-
teins. While the first and fifth categories contain typical functions
related to globular (mainly enzymatic functions) and disordered
(inhibitory and regulatory) proteins, respectively, the middle cate-

370gories mostly related to transcription, and adaptor functions.
We also selectively collected the 10 most disordered proteins

for G1/S and G2/M transitions (TABLES 1 & 2). Highly disordered
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proteins are involved in the regulation of each transition, but
interestingly, their length distribution is different. While the

375 small regulator, inhibitor proteins are abundant among disor-
dered proteins in G1/S, longer proteins with the potential to
have adaptor, complex and bridge forming function are domi-
nant among IDPs in G2/M transition.

Diseases, & drug targets

380 Due to the frequent involvement of IDPs in signaling and reg-
ulatory processes [5], impairments of their function are very
often causally involved in diseases, such as cancer, inflammation
and neurodegenerative diseases [76]. We will next overview the
involvement of cell-cycle regulatory proteins in diseases.

385 Diseases

Seeing the central role of cell-cycle control in the integrity of a
multicellular organism, it is of no surprise that its proteins play
primary roles in several diseases, the most important of which is
cancer. Tumor genesis is promoted by either the aberrant

390 expression of positive regulators, such as cyclins, or the loss of
function of negative regulators, such as CKIs [7]. Overexpression
of Cyclin D1 and Cyclin E has been found in breast carcinomas
and multiple other tumors. Given their crucial role in regulating
the activity of cyclins, it is surprising that mutations of CKIs are

395not frequently found in human tumors [77]. Nevertheless, many
human tumors, including breast cancers, colon, gastric and
prostate tumors show decreased p27KIP1 protein levels [7].

Rb, the most important CDK target, is often mutated in
human retinoblastoma and lung cancer [78]. Loss of function of

400Rb due to mutation or binding of tumor virus proteins leads
to unrestrained cell proliferation [79]. Approximately 90% of
human cancers have abnormalities in some component of the
Rb pathway [78].

The tumor suppressor p53 is the most prominent and exten-
405sively studied example due to its dominating effect on tumor

cell growth and proliferation. The p53 gene is the most fre-
quently mutated gene in human cancers [80], and other mecha-
nisms, like binding of viral oncoproteins, can also alter or
block p53 function [81]. Overexpression of MDM2, the nega-

410tive regulator of p53 has also been reported in leukemia, lym-
phoma, breast carcinoma, sarcoma and glioma [12].

BRCA1 is a major breast and ovarian cancer susceptibility
gene, with mutations in this gene predisposing women to a
very high risk of developing breast and ovarian tumors [57].

415BRCA1 mutations often result in defective DNA repair, geno-
mic instability and sensitivity to DNA damaging agents.

Cohesins mediate sister chromatid cohesion and cellular
long-distance chromatin interactions affecting genome

Table 1. 10 most disordered protein involved in cell-cycle G1/S transition.

Protein name (SwissProt ID) Function in the G1/S transition Size
(in residues)

Disorder
frequency

Protein phosphatase 1 regulatory subunit 1C

(PPR1C_HUMAN)

Inhibitor of protein-phosphatase 1, promotes cell growth

and cell cycle progress at the G1/S transition

109 1.000

Cyclin-dependent kinase inhibitor 1B

(CDN1B_HUMAN)

Important regulator of cell cycle progression. Involved in

G1 arrest

198 0.955

RAD9, HUS1, RAD1-interacting nuclear

orphan protein 1 (RHNO1_HUMAN)

Required for the progression of the G1 to S phase

transition

238 0.672

Protein NPAT (NPAT_HUMAN) Required for progression through the G1 and S phases

of the cell cycle and for S phase entry. Activates

transcription of the histone H2A, histone H2B, histone

H3 and histone H4 genes in conjunction with MIZF

1427 0.654

Cyclin-dependent kinase inhibitor 1C

(CDN1C_HUMAN)

Potent tight-binding inhibitor of several G1 cyclin/CDK

complexes (cyclin E-CDK2, cyclin D2-CDK4, and cyclin A-

CDK2) and, to lesser extent, of the mitotic cyclin B-CDC2

316 0.652

Protein BEX2 (BEX2_HUMAN) Required for the normal cell cycle progression during

G1 in breast cancer cells through the regulation of

CCND1 and CDKN1A

128 0.640

Growth arrest and DNA damage-inducible

proteins-interacting protein 1 (G45IP_HUMAN)

Acts as a negative regulator of G1 to S cell cycle phase

progression by inhibiting cyclin-dependent kinases

222 0.617

Cyclin-dependent kinase inhibitor 2A, isoform

4 (CD2A2_HUMAN)

Capable of inducing cell cycle arrest in G1 and

G2 phases

132 0.599

Bromodomain-containing protein

7 (BRD2_HUMAN)

Inhibits cell cycle progression from G1 to S phase 651 0.555

Serine/threonine-protein kinase

LATS2 (LATS2_HUMAN)

Negatively regulates G1/S transition by down-regulating

cyclin E/CDK2 kinase activity

1088 0.546
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maintenance and gene expression. Mutations in cohesin’s subu-
420 nits and its regulator proteins result in defects of cellular

growth and differentiation, causing different diseases, com-
monly termed as cohesinopathies [82].

Drug development

As the loss of control over cell cycle is by definition the very
425 essence of cancer, many of the proteins mentioned in the article

are involved in cancer as either oncogenes or tumor suppressors.
It follows that they are primary drug targets, and actually several
of them are under investigation in drug development programs,
or are targeted by cancer drugs on the market [83,84]. The prepon-

430 derance of structural disorder, however, is an apparent impedi-
ment to drug development efforts, because our traditional
approaches – which brought many successes – cannot effectively
target protein–protein interaction interfaces, which are usually
large and flat. In accord, most current drugs on the market target

435 the active site of enzymes, such as kinases [85] or ligand-binding
sites of receptors, such as G-protein-coupled receptors [86]. This
feature is also reflected in the so-called Lipinski rules (or Lipinski
rule of 5) [87], which state that successful drug molecules are
small hydrophobic chemicals of certain chemical nature (in terms

440 of solubility, charge and the number of H-bonds), which ensure
successful cellular delivery and interaction with the partner.

Due to their large flexibility, IDPs are not inherently amena-
ble to bind such small molecules with sufficient affinity and

specificity. It explains that no successful drug development has
445been based on structural disorder, despite IDPs being primary

drug targets. Because of the frequent involvement of cell-cycle
regulatory IDPs in cancer, and the ensuing interest in develop-
ing drugs against them, we outline the recent status of ideas
and efforts of drug development against IDPs. Because IDPs

450most often function by protein–protein interactions, their inter-
faces might in principle be targeted by small molecules. As sug-
gested, the interfaces of globular proteins are large and flat, due
to which most attempts to develop drug molecules that block
protein–protein interactions have so far failed [88]. In fact, there

455are only about eight drugs on the market that target protein–
protein interaction interfaces [89,90].

IDPs, however, most often engage in a special type of interac-
tion, mediated by their short recognition elements (preformed
structural elements, PSEs [91], molecular recognition features,

460MoRFs [92], short linear motifs (SLiMs, also termed eukaryotic
linear motifs, ELMs [93,94]), which bind in a hydrophobic pocket
of the partner molecule, in an interface that resembles receptor–
ligand or enzyme–substrate binding. Not surprisingly, four of
the eight drugs against interaction interfaces (affecting the com-

465plex of BAK/Bcl-xL, p53/MDM2, Tcf/b-catenin and Smac/
XIAP [89,90]) actually target a complex that involves a disordered
and a structured partner. The conspicuously high incidence of
success is very suggestive that the binding partners of IDPs
might be successfully targeted by small molecules [95].

Table 2. 10 most disordered protein involved in cell-cycle G2/M transition.

Protein Mame (SwissProt ID) Function in the G2/M Transition Size (in
Residues)

Disorder
Frequency

Cell division cycle-associated

protein 3 (CDCA3_HUMAN)

Acts by participating in E3 ligase complexes that mediate the

ubiquitination and degradation of WEE1 kinase at G2/M phase

268 1.000

High mobility group protein

HMGI-C (HMGA2_HUMAN)

Plays an important role in chromosome condensation during the meiotic

G2/M transition of spermatocytes

109 1.000

Mediator of DNA damage

checkpoint protein

1 (MDC1_HUMAN)

Required for checkpoint mediated cell cycle arrest in response to DNA

damage within both the S phase and G2/M phases of the cell cycle

2089 0.840

Protein FAM32A

(FA32A_HUMAN)

Isoform 1 may induce G2 arrest and apoptosis 112 0.830

Centrosomal protein of 164 kDa

(CE164_HUMAN)

Plays a critical role in G2/M checkpoint and nuclear divisions 1460 0.699

Apoptosis-stimulating of

p53 protein 2 (ASPP2_HUMAN)

Impedes cell cycle progression at G2/M transition 1128 0.668

Serine/threonine-protein kinase

LATS1 (LATS1_HUMAN)

Negatively regulates G2/M transition by down-regulating CDK1 kinase

activity

1130 0.640

Breast cancer type 1 susceptibility

protein (BRCA1_HUMAN)

Component of the BRCA1-RBBP8 complex which regulates

CHEK1 activation and controls cell cycle G2/M checkpoints on DNA

damage via BRCA1-mediated ubiquitination of RBBP8

1863 0.620

Cyclin-dependent kinase inhibitor

2A, isoform 4 (CD2A2_HUMAN)

Capable of inducing cell cycle arrest in G1 and G2 phases 132 0.599

Pre-mRNA-splicing regulator

WTAP (FL2D_HUMAN)

Regulates G2/M cell-cycle transition by binding to the 3’ UTR of

CCNA2, which enhances its stability

396 0.599
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470 If there is one example to demonstrate the potency of this
concept, one should mention the case of targeting the p53–
Mdm2 interaction by a family of small molecules, nutlins [84].
As suggested, p53 is a central player in the stability and integ-
rity of the genome [96]. p53 becomes stabilized upon DNA

475 damage, it level increases and initiates a variety of cellular
responses, aimed at repairing DNA and/or delaying cell-cycle
progression, or causing apoptosis. The primary regulator of
p53 is Mdm2, an E3 ubiquitin ligase that is engaged in a feed-
back regulatory loop with p53. Mdm2-mediated ubiquitination

480 and subsequent proteasomal degradation ensures low resting
levels of the protein [97]. It has been suggested that the physical
inhibition of the interaction of the two proteins could re-
activate p53 in tumors overexpressing Mdm2 and provide a
potent therapeutic strategy in cancer. The complex of p53 and

485 Mdm2 corresponds to the above definitions: Mdm2 presents a
deep hydrophobic binding pocket in which an amphipathic
short helix of p53 is inserted: the pocket can bind be filled
with potent and selective small-molecule antagonists, the Nut-
lins [84]. Nutlins compete with p53 binding and have the

490 potency to activate the p53 pathway in cancer cells, which can

even re-initiate cell-cycle arrest, apoptosis and growth inhibition
of human tumor xenografts in nude mice.

Therefore, partner targeting can be an effective strategy to
combat diseases caused by IDPs. Because the number of short

495disorder-related binding motifs in the proteome can be very
large [94], this approach can be a general strategy of very broad
applicability. Dunker et al. have estimated the possible number
of such targets [95] in the thousands with interfaces that are
ideal drug targets: the IDP engages in weak interaction due to

500induced folding, which can be competed with a small mole-
cule, the binding element of the IDP is an isolated helical seg-
ment, which is likely to fit into a groove or pocket, the
amphipathic nature of the helix positions hydrophobic residues
on one side, which makes it likely the existence of a comple-

505mentary concave hydrophobic-binding pocket amenable for tar-
geting by a small molecule. Many of the identified potential
targets are involved in cancer, making them linked with cell-
cycle regulation.

In principle, IDPs could also be targeted directly by interfer-
510ing small molecules although their very dynamic nature and

extreme structural heterogeneity hamper such efforts. In a few
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Figure 1. Frequency distribution of proteins with different percentage of disorder among all human and cell-cycle-related
proteins. Human proteins were extracted from UniProt/SwissProt database, cell-cycle proteins were filtered by using SwissProt keyword
(KW-0131). Disorder propensity and the derived percentage were calculated by using the IUPred algorithm (choosing 0.5 as threshold in
IUPred, regions below that were considered as structured, above were considered as disordered protein region). Characteristic cellular
functions among cell-cycle-related proteins in different disorder percentage categories are highlighted in boxes (according GO annota-
tions, number of hits indicated).
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cases, however, small-molecule interference of IDP function has
been achieved. The first system successfully targeted was the c-
Myc transcription factor, which is involved in many types of

515 cancer [98,99]. cMyc falls into the basic helix-loop-helix leucine
zipper (bHLHZip) transcription factor family, and forms func-
tional heterodimers with Max through a coiled-coil dimeriza-
tion interface. Formation of c-Myc–Max complexes are
attractive targets in oncology, and although their interaction

520 regions are intrinsically disordered prior to heterodimerization,
inhibitory small molecules were found in systematic screens.
A variety of biophysical experiments (primarily NMR) sug-
gested that binding of the molecules selected is specific to these
sites and they preserve the disordered state of c-Myc, thereby

525 inhibiting its heterodimerization with Max [98,99].
Another class of disordered oncogenic targets that might be

targeted by small molecules is that of oncogenic fusion protein.
These proteins result from chromosomal translocations and
show strong correlation with structural disorder [100]. Such

530 fusion event was observed, for example, in Ewing’s sarcoma
family tumors (ESFTs), which contain a characteristic translo-
cation that leads to the expression of the oncogenic fusion pro-
tein EWS-FLI1. EWS-FLI1 is mostly disordered, against which
a small molecule binder could be developed, which inhibits its

535 binding to RNA helicase A [101]. This compound induces apo-
ptosis in ESFT cells and reduces the growth of ESFT ortho-
topic xenografts.

A small molecule binding to IDPs of even more subtle effect
has been identified in protein tyrosine phosphatase 1B

540 (PTP1B), which has a positive role in HER2 signaling in breast
tumors. In a way similar to kinases, targeting their evolution-
arily conserved active site is problematic for specificity, due to
cross-reaction with the many other phosphatases in the cell.
This problem may now have been circumvented by developing

545 a binder to the long, disordered, non-catalytic C-terminal tail
of the enzyme [102]. Binding of the small molecule at this site
locks the catalytic domain in an inactive state, antagonizes
HER2 signaling, inhibits tumorigenesis in xenografts and abro-
gates metastasis in a mouse model of breast cancer. The impor-

550 tance of this finding is that small molecule not only can bind
to a disordered segment of a protein but also can have an allo-
steric inhibitory effect. Allosteric drugs have a unique flavor of
specificity [103], which, in the case of IDPs, also puts emphasis
on subtle allosteric long-range communication in IDPs termed

555 multistery [104].

Clinical proteomics

The potential targets, that is, disorder-related disease-associated
proteins can be identified in high-throughput (HTS) proteomic
analyses. There are numerous novel techniques with the poten-

560 tial to provide valuable biological information related to IDPs
in the physiological or pathological process of cell cycle. In
vitro kinase assays, like the kinase assay linked with phospho-
proteomics technique can be used to determine the substrate
specificity and identifying direct substrates of protein kinases.

565 The method was already used to map phosphorylation patterns

and kinase-ligand pairs within the Syk and ERK path-
ways [105,106]. A special rapid purification-linked method com-
bined with on-bead kinase assay (native enzyme–substrate
complex kinase assay, NESKA) was developed very recently

570and was already used in synchronized cells to identify substrates
cyclin/CDKs [107]. Kinase substrates can be also labeled using
ATP analogues and modified enzymes. Using a mutated Cdk1,
Blethrow et al. were able to identify more than 70 phosphoryla-
tion targets for the Cdk1-cyclin B complex [108].

575Affinity purification, a relatively traditional method, has
become a HTS method with the combination of modern mass
spectrometry. Several studies aimed to target kinases in the pro-
cess of cell cycle, and identified numerous phosphorylation tar-
gets for cyclin–Cdk complexes, and specifically to cyclin E1,

580A2 and B1 [109,110]. Selective kinase targeting using small-
molecule inhibitors can further enhance quantitative phospho-
proteomics. With this technique, phosphorylation sites, and
possible interactions were identified in the case of Aurora A,
Aurora B and kinases of the Plk family [111]; yeast Mec1,

585Tel1 and Rad53 kinases [112]; ATM and ATR kinases [113].
HTS proteomic studies are always coupled with extended bio-
informatics methods to analyze and to store the large amount
of output data.

Expert commentary & 5-year view

590Recognition of structural disorder some 15 years ago sparked a
revolutionary transition in the field of structural molecular biol-
ogy. It is now ever more appreciated that this phenomenon
exists in vitro and also in vivo, and it plays a critical role in the
function of many key proteins in signaling and regulation. The

595central role of cell cycle in disease makes the study of this phe-
nomenon imperative, by the battery of structural and func-
tional techniques at our disposal. We have quite a detailed
view on how IDPs function [4,23], and we have rapidly advanc-
ing tools to study them [114]. The ensemble description of

600IDPs [21,22] suggests that we might be able to extend the struc-
ture–function paradigm over the disordered state of proteins, in
the cell cycle and other regulatory paradigms, which will pro-
vide a much deeper understanding of the regulation of cell
cycle.

605In many cases, it is already clear how intrinsically disorder
contributes to cell-cycle regulation. Its role is most easily inter-
preted in inhibitors (e.g., securin, p27), which bind and inhibit
critical elements of the regulatory circuit. These are usually
small proteins or well-defined regions of larger ones, they

610become ordered in the presence of the partner and can even be
crystallized in complex. Their detailed characterization can be
approached by technical means already at our disposal.

More challenging and difficult to approach is the assembly
of complexes, which are often transient and subject to lots of

615regulatory inputs and communication. Often, we only know
about the involvement of large IDPs in the function of com-
plexes. Many proteins involved in G2/M also fall into this
category (TABLE 2), they are long and disordered, and probably
function as spacers and connectors, and raise special problems
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620 for studying in detail. It appears that they are often involved in
reaching out for remote partners by fly-casting [29] and are sub-
ject to an extremely large number of regulatory inputs by post-
translational modifications, primarily phosphorylation.

Fine tuning of function by such multisite post-translational
625 modifications is exemplified by p53, for example. Increasing

residual p53 helicity by tuning phosphorylation results in an
increasing binding to MDM2, altered dynamics of the protein
and impaired target gene expression and lack of arrest of cell
cycle [115]. Results of similar multisite phosphorylation devices

630 may have different readouts, such as ultrasensitive threshold
response, coincidence detection and rheostat [1], regulatory rela-
tions that will be a great challenge to sort out in the future.
A key and upcoming method one should be keen on using in
this regard is in-cell NMR, which has the power of reporting

635 on structural–functional relations from within a live cell [114].
In all, our message for the future is that disordered proteins

and regions of disorder in proteins are functional, and we
should not be discouraged to find out what and how they do.

Often they link the action of an enzyme on a different target,
640or add a subtle regulatory module to a functional domain. For

example, protein Tyr phosphatase 1B (PTP1B) has a long C-
terminal regulatory domain, and this long noncatalytic segment
could be targeted by an allosteric inhibitor [102]. It is not
unfounded to expect that studies and analyses on structural dis-

645order in cell-cycle regulation will have a golden era just ahead
of us, with rich rewards not only in our basic knowledge of the
cell but also in our ability in interfering with them in case of
disease.
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Key issues

660 . Progression through the phases of the cell cycle is crucial for the stability of the cells and its correct regulation is the cornerstone of the

integrity of the whole organism. Proteins involved in cell cycle regulation play primary roles in several diseases, the most important of

which is cancer. Tumor genesis is promoted by either the aberrant expression of positive regulators, such as cyclins, or the loss of func-

tion of negative regulators, such as cyclin-dependent kinase (CDK) inhibitors (CKIs).

. Intrinsically disordered proteins or regions (IDPs/IDRs) function without possessing a stable three-dimensional structure and are among

665 the main players in cell cycle regulation. IDPs function either as disordered polypeptide chains (entropic chains) or via molecular recogni-

tion (as shorter or longer binding motifs), which entails manifold functional advantages.

. Proteins annotated to cell cycle have significantly different frequency distribution from all human proteins. This distribution bias shows a

strong association of structural disorder with cell cycle. Highly disordered proteins are involved in the regulation of G1/S and G2/M tran-

sitions, and while the small regulator, inhibitor proteins are abundant among disordered proteins in G1/S, longer proteins with the

670 potential to have adaptor, complex and bridge forming function are dominant among IDPs in G2/M transition.

. The activity of different Cdk/cyclin complexes is strictly controlled, primarily by CKIs. The most thoroughly studied group of CKIs is the

CIP/KIP family that comprises p21Cip1, p27Kip1 and p57Kip2. The CIP/KIP proteins are IDPs and although they inhibit multiple CDK/

cyclin complexes, they also facilitate the assembly and nuclear transport of the CDK 4(6)/cyclin-D complexes.

. A central player in cell-cycle regulation is p53, which is activated by DNA damage, heat sock and other stress signals. Activation of

675 p53 results in changes of several genes that intervene in the progression of the cell cycle leading to cell cycle arrest and apoptosis. Its

disordered N-terminal domain is involved in the binding of transcriptional coactivators and corepressors and is essential for binding with

Mdm2.

. Phosphorylation participates in the regulation of almost all cellular processes, and it has been shown that phosphorylation sites

preferentially occur in disordered regions where they are accessible for the modifying enzyme. Changes in phosphorylation pattern may

680 increase the sensitivity and robustness of the cellular response and may promote the switch-like behavior of a cellular process.

. The preponderance of structural disorder is an apparent impediment to drug development efforts, but because IDPs most often

function by protein–protein interactions, their interfaces might in principle be targeted by small molecules. IDPs most often engage in a

special type of interaction, mediated by their short recognition elements, which bind in a hydrophobic pocket of the partner molecule,

suggesting that the binding partners of IDPs might be successfully targeted by small molecules. Four of the eight drugs against protein–

685 protein interaction interfaces target a complex that involves a disordered and a structured partner.

. The potential targets, that is, disorder-related disease-associated proteins can be identified in high-throughput (HTS) proteomic analyses.

There are numerous novel techniques with the potential to provide valuable biological information related to IDPs in the physiological or

pathological process of cell cycle. HTS proteomic studies are always coupled with extended bioinformatics methods to analyze and to

store the large amount of output data.
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