1,250 research outputs found
General Relativistic Electromagnetic Fields of a Slowly Rotating Magnetized Neutron Star. I. Formulation of the equations
We present analytic solutions of Maxwell equations in the internal and
external background spacetime of a slowly rotating magnetized neutron star. The
star is considered isolated and in vacuum, with a dipolar magnetic field not
aligned with the axis of rotation. With respect to a flat spacetime solution,
general relativity introduces corrections related both to the monopolar and the
dipolar parts of the gravitational field. In particular, we show that in the
case of infinite electrical conductivity general relativistic corrections due
to the dragging of reference frames are present, but only in the expression for
the electric field. In the case of finite electrical conductivity, however,
corrections due both to the spacetime curvature and to the dragging of
reference frames are shown to be present in the induction equation. These
corrections could be relevant for the evolution of the magnetic fields of
pulsars and magnetars. The solutions found, while obtained through some
simplifying assumption, reflect a rather general physical configuration and
could therefore be used in a variety of astrophysical situations.Comment: A few typos corrected; matches the versions in MNRA
Turning Points in the Evolution of Isolated Neutron Stars' Magnetic Fields
During the life of isolated neutron stars (NSs) their magnetic field passes
through a variety of evolutionary phases. Depending on its strength and
structure and on the physical state of the NS (e.g. cooling, rotation), the
field looks qualitatively and quantitatively different after each of these
phases. Three of them, the phase of MHD instabilities immediately after NS's
birth, the phase of fallback which may take place hours to months after NS's
birth, and the phase when strong temperature gradients may drive thermoelectric
instabilities, are concentrated in a period lasting from the end of the
proto--NS phase until 100, perhaps 1000 years, when the NS has become almost
isothermal. The further evolution of the magnetic field proceeds in general
inconspicuous since the star is in isolation. However, as soon as the product
of Larmor frequency and electron relaxation time, the so-called magnetization
parameter, locally and/or temporally considerably exceeds unity, phases, also
unstable ones, of dramatic changes of the field structure and magnitude can
appear. An overview is given about that field evolution phases, the outcome of
which makes a qualitative decision regarding the further evolution of the
magnetic field and its host NS.Comment: References updated, typos correcte
Spins, Electromagnetic Moments, and Isomers of 107-129Cd
The neutron-rich isotopes of cadmium up to the N=82 shell closure have been
investigated by high-resolution laser spectroscopy. Deep-UV excitation at 214.5
nm and radioactive-beam bunching provided the required experimental
sensitivity. Long-lived isomers are observed in 127Cd and 129Cd for the first
time. One essential feature of the spherical shell model is unambiguously
confirmed by a linear increase of the 11/2- quadrupole moments. Remarkably,
this mechanism is found to act well beyond the h11/2 shell
A Novel Mechanism for Type-I Superconductivity in Neutron Stars
We suggest a mechanism that may resolve a conflict raised by Link between the
precession of a neutron star and the standard picture in which its core is
composed of a mixture of a neutron superfluid and a type-II proton
superconductor. We will show that if there is a persistent, non-dissipating
current running along the magnetic flux tubes, the force between magnetic flux
tubes may be attractive, resulting in a type-I, rather than a type-II,
superconductor. If this is the case, the conflict between the observed
precession and the canonical estimation of the Landau-Ginzburg parameter (which
suggests type II behaviour) will be automatically resolved. Such a current
arises in some condensed matter systems and may also appear in QCD dense matter
as a consequence of quantum anomalies. We calculate the interaction between two
vortices carrying a current j and find a constraint on the magnitude of j where
a superconductor is always type-I, even when the cannonical Landau-Ginzburg
parameter indicates type-II behaviour. If this condition is met, the magnetic
field is expelled from the superconducting regions of the neutron star leading
to the formation of the intermediate state where alternating domains of
superconducting matter and normal matter coexist. We further argue that even
when the induced current is small the vortex Abrikosov lattice will
nevertheless be destroyed due to the helical instability studied previously in
many condensed matter systems. This would also resolve the apparent
contradiction with the precession of the neutron stars. We also discuss some
instances where anomalous induced current may play a crucial role, such as the
neutron star kicks, pulsar glitches and the toroidal magnetic field.Comment: 10 pages, Additional arguments are given supporting the idea that the
Abrikosov lattice will be destroyed in regions where longitudinal currents
are induce
Nuclear Charge Radius of Be
The nuclear charge radius of Be was precisely determined using the
technique of collinear laser spectroscopy on the transition in the Be ion. The mean square charge radius increases
from Be to Be by \delta ^{10,12} = 0.69(5) \fm^{2}
compared to \delta ^{10,11} = 0.49(5) \fm^{2} for the
one-neutron halo isotope Be. Calculations in the fermionic molecular
dynamics approach show a strong sensitivity of the charge radius to the
structure of Be. The experimental charge radius is consistent with a
breakdown of the N=8 shell closure.Comment: 5 pages, 3 figure
Collinear laser spectroscopy of atomic cadmium
Hyperfine structure and factors of the atomic transition are determined from collinear
laser spectroscopy data of Cd and Cd. Nuclear
magnetic moments and electric quadrupole moments are extracted using reference
dipole moments and calculated electric field gradients, respectively. The
hyperfine structure anomaly for isotopes with and nuclear
ground states and isomeric states is evaluated and a linear
relationship is observed for all nuclear states except . This
corresponds to the Moskowitz-Lombardi rule that was established in the mercury
region of the nuclear chart but in the case of cadmium the slope is
distinctively smaller than for mercury. In total four atomic and ionic levels
were analyzed and all of them exhibit a similar behaviour. The electric field
gradient for the atomic level is derived from
multi-configuration Dirac-Hartree-Fock calculations in order to evaluate the
spectroscopic nuclear quadrupole moments. The results are consistent with those
obtained in an ionic transition and based on a similar calculation.Comment: 12 pages, 5 figure
Chemical differentiation in regions of high-mass star formation I. CS, dust and N2H^+ in southern sources
Aims. Our goals are to compare the CS, N2H+ and dust distributions in a
representative sample of high-mass star forming dense cores and to determine
the physical and chemical properties of these cores. Methods. We compare the
results of CS(5-4) and 1.2 mm continuum mapping of twelve dense cores from the
southern hemisphere presented in this work, in combination with our previous
N2H+(1-0) and CS(2-1) data. We use numerical modeling of molecular excitation
to estimate physical parameters of the cores. Results. Most of the maps have
several emission peaks (clumps). We derive basic physical parameters of the
clumps and estimate CS and N2H+ abundances. Masses calculated from LVG
densities are higher than CS virial masses and masses derived from continuum
data, implying small-scale clumpiness of the cores. For most of the objects,
the CS and continuum peaks are close to the IRAS point source positions. The
CS(5-4) intensities correlate with continuum fluxes per beam in all cases, but
only in five cases with the N2H+(1-0) intensities. The study of spatial
variations of molecular integrated intensity ratios to continuum fluxes reveals
that I(N2H+)/F{1.2} ratios drop towards the CS peaks for most of the sources,
which can be due to a N2H+ abundance decrease. For CS(5-4), the I(CS)/F{1.2}
ratios show no clear trends with distance from the CS peaks, while for CS(2-1)
such ratios drop towards these peaks. Possible explanations of these results
are considered. The analysis of normalized velocity differences between CS and
N2H+ lines has not revealed indications of systematic motions towards CS peaks.Comment: 13 pages, 5 figures, accepted by Astronomy and Astrophysic
A hierarchical model for aging
We present a one dimensional model for diffusion on a hierarchical tree
structure. It is shown that this model exhibits aging phenomena although no
disorder is present. The origin of aging in this model is therefore the
hierarchical structure of phase space.Comment: 10 pages LaTeX, 4 postscript-figures include
Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells
Neuronal communication and endocrine signaling are fundamental for integrating
the function of tissues and cells in the body. Hormones released by endocrine
cells are transported to the target cells through the circulation. By contrast, transmitter
release from neurons occurs at specialized intercellular junctions, the synapses.
Nevertheless, the mechanisms by which signal molecules are synthesized,
stored, and eventually secreted by neurons and endocrine cells are very similar.
Neurons and endocrine cells have in common two different types of secretory
organelles, indicating the presence of two distinct secretory pathways. The synaptic
vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the
secretory granules (also referred to as dense core vesicles, because of their electron
dense content) are filled with neuropeptides and amines. In endocrine cells, peptide
hormones and amines predominate in secretory granules. The function and content
of vesicles, which share antigens with synaptic vesicles, are unknown for most
endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain
GABA, which may be involved in intrainsular signaling.'
Exocytosis of both synaptic vesicles and secretory granules is controlled by
cytoplasmic calcium. However, the precise mechanisms of the subsequent steps,
such as docking of vesicles and fusion of their membranes with the plasma membrane,
are still incompletely understood. This contribution summarizes recent observations
that elucidate components in neurons and endocrine cells involved in
exocytosis. Emphasis is put on the intracellular aspects of the release of secretory
granules that recently have been analyzed in detail
- …
