31 research outputs found
Single spin-torque vortex oscillator using combined bottom-up approach and e-beam lithography
A combined bottom-up assembly of electrodeposited nanowires and electron beam
lithography technique has been developed to investigate the spin transfer
torque and microwave emission on specially designed nanowires containing a
single Co/Cu/Co pseudo spin valve. Microwave signals have been obtained even at
zero magnetic field. Interestingly, high frequency vs. magnetic field
tunability was demonstrated, in the range 0.4 - 2 MHz/Oe, depending on the
orientation of the applied magnetic field relative to the magnetic layers of
the pseudo spin valve. The frequency values and the emitted signal frequency as
a function of the external magnetic field are in good quantitative agreement
with the analytical vortex model as well as with micromagnetic simulations.Comment: 9 pages, 4 figure
On the formation of cyclones and anticyclones in a rotating fluid
It is commonly observed that the columnar vortices that dominate the large scales in homogeneous, rapidly rotating turbulence are predominantly cyclonic. This has prompted us to ask how this asymmetry arises. To provide a partial answer to this we look at the process of columnar vortex formation in a rotating fluid and, in particular, we examine how a localized region of swirl (an eddy) can convert itself into a columnar structure by inertial wave propagation. We show that, when the Rossby number (Ro) is small, the vortices evolve into columnar eddies through the radiation of linear inertial waves. When the Rossby number is large, on the other hand, no such column is formed. Rather, the eddy bursts radially outward under the action of the centrifugal force. There is no asymmetry between cyclonic and anticyclonic eddies for these two regimes. However, cyclones and anticyclones behave differently in the intermediate regime of Ro~1. Here we find that the transition from columnar vortex formation to radial bursting occurs at lower values of Ro for anticyclones, with the transition for anticyclones occurring at Ro~0.5, and that for cyclones at Ro~2. Thus, in a homogeneous turbulence experiment conducted at, say, Ro=1, we would expect to see more cyclones than anticyclones. The reason for this asymmetry at Ro~1 is explained
Structural and electrical characterization of hybrid metal-polypyrrole nanowires
We present here the synthesis and structural characterization of hybrid
Au-polypyrrole-Au and Pt- polypyrrole-Au nanowires together with a study of
their electrical properties from room-temperature down to very low temperature.
A careful characterization of the metal-polymer interfaces by trans- mission
electron microscopy revealed that the structure and mechanical strength of
bottom and upper interfaces are very different. Variable temperature electrical
transport measurements were performed on both multiple nanowires - contained
within the polycarbonate template - and single nanowires. Our data show that
the three-dimensional Mott variable-range-hopping model provides a complete
framework for the understanding of transport in PPy nanowires, including
non-linear current-voltage characteristics and magnetotransport at low
temperatures.Comment: Phys. Rev. B Vol. 76 Issue 11 (2007
DCDB Wintermute: Enabling Online and Holistic Operational Data Analytics on HPC Systems
As we approach the exascale era, the size and complexity of HPC systems
continues to increase, raising concerns about their manageability and
sustainability. For this reason, more and more HPC centers are experimenting
with fine-grained monitoring coupled with Operational Data Analytics (ODA) to
optimize efficiency and effectiveness of system operations. However, while
monitoring is a common reality in HPC, there is no well-stated and
comprehensive list of requirements, nor matching frameworks, to support
holistic and online ODA. This leads to insular ad-hoc solutions, each
addressing only specific aspects of the problem.
In this paper we propose Wintermute, a novel generic framework to enable
online ODA on large-scale HPC installations. Its design is based on the results
of a literature survey of common operational requirements. We implement
Wintermute on top of the holistic DCDB monitoring system, offering a large
variety of configuration options to accommodate the varying requirements of ODA
applications. Moreover, Wintermute is based on a set of logical abstractions to
ease the configuration of models at a large scale and maximize code re-use. We
highlight Wintermute's flexibility through a series of practical case studies,
each targeting a different aspect of the management of HPC systems, and then
demonstrate the small resource footprint of our implementation.Comment: Accepted for publication at the 29th ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC 2020
Current–Voltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope
In this paper, we focus on current–voltage (I–V) characteristics in several kinds of quasi-one-dimensional (quasi-1D) nanofibers to investigate their electronic transport properties covering a wide temperature range from 300 down to 2 K. Since the complex structures composed of ordered conductive regions in series with disordered barriers in conducting polymer nanotubes/wires and CdS nanowires, all measured nonlinearI–Vcharacteristics show temperature and field-dependent features and are well fitted to the extended fluctuation-induced tunneling and thermal excitation model (Kaiser expression). However, we find that there are surprisingly similar deviations emerged between theI–Vdata and fitting curves at the low bias voltages and low temperatures, which can be possibly ascribed to the electron–electron interaction in such quasi-1D systems with inhomogeneous nanostructures
Electrical Conductivity Studies on Individual Conjugated Polymer Nanowires: Two-Probe and Four-Probe Results
<p>Abstract</p> <p>Two- and four-probe electrical measurements on individual conjugated polymer nanowires with different diameters ranging from 20 to 190 nm have been performed to study their conductivity and nanocontact resistance. The two-probe results reveal that all the measured polymer nanowires with different diameters are semiconducting. However, the four-probe results show that the measured polymer nanowires with diameters of 190, 95–100, 35–40 and 20–25 nm are lying in the insulating, critical, metallic and insulting regimes of metal–insulator transition, respectively. The 35–40 nm nanowire displays a metal–insulator transition at around 35 K. In addition, it was found that the nanocontact resistance is in the magnitude of 10<sup>4</sup>Ω at room temperature, which is comparable to the intrinsic resistance of the nanowires. These results demonstrate that four-probe electrical measurement is necessary to explore the intrinsic electronic transport properties of isolated nanowires, especially in the case of metallic nanowires, because the metallic nature of the measured nanowires may be coved by the nanocontact resistance that cannot be excluded by a two-probe technique.</p
Current–Voltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope
In this paper, we focus on current–voltage (I–V) characteristics in several kinds of quasi-one-dimensional (quasi-1D) nanofibers to investigate their electronic transport properties covering a wide temperature range from 300 down to 2 K. Since the complex structures composed of ordered conductive regions in series with disordered barriers in conducting polymer nanotubes/wires and CdS nanowires, all measured nonlinearI–Vcharacteristics show temperature and field-dependent features and are well fitted to the extended fluctuation-induced tunneling and thermal excitation model (Kaiser expression). However, we find that there are surprisingly similar deviations emerged between theI–Vdata and fitting curves at the low bias voltages and low temperatures, which can be possibly ascribed to the electron–electron interaction in such quasi-1D systems with inhomogeneous nanostructures
RecPhyloXML: a format for reconciled gene trees.
A reconciliation is an annotation of the nodes of a gene tree with evolutionary events-for example, speciation, gene duplication, transfer, loss, etc.-along with a mapping onto a species tree. Many algorithms and software produce or use reconciliations but often using different reconciliation formats, regarding the type of events considered or whether the species tree is dated or not. This complicates the comparison and communication between different programs.
Here, we gather a consortium of software developers in gene tree species tree reconciliation to propose and endorse a format that aims to promote an integrative-albeit flexible-specification of phylogenetic reconciliations. This format, named recPhyloXML, is accompanied by several tools such as a reconciled tree visualizer and conversion utilities.
http://phylariane.univ-lyon1.fr/recphyloxml/
Static vs dynamic in vitro digestions of an innovative Citrus concentrate: Bioaccessibility of its phytomicronutrients
Static vs dynamic in vitro digestions of an innovative Citrus concentrate: Bioaccessibility of its phytomicronutrients. 5th International Conference on Food Digestio