15,985 research outputs found

    A continuous/discontinuous Galerkin formulation for a strain gradient-dependent damage model: 2D results

    Get PDF
    The numerical solution of strain gradient-dependent continuum problems has been hindered by continuity demands on the basis functions. The presence of terms in constitutive models which involve gradients of the strain eld means that the C0C^0 continuity of standard nite element shape functions is insu cient. In this work, a continuous/discontinuous Galerkin formulation is developed to solve a strain gradient-dependent damage problem in a rigorous manner. Potential discontinuities in the strain field across element boundaries are incorporated in the weak form of the governing equations. The performance of the formulation is tested in one dimension for various interpolations, which provides guidance for two-dimensional simulations

    Automated modelling of viscoelastic flow using FEniCS

    Get PDF
    Using high-level abstractions, it is possible to efficiently automate the development of finite element models. This has advantages in terms of rapid development, a dramatic reduction in programming errors and offers the possibility of performing special optimisations to produced highly efficient code. The power of this concept is illustrated using tools from the FEniCS project for the simulation of a viscoelastic fluid in an Eulerian framework, and the benchmark problem of a sphere falling in a cylinder pipe is simulated

    Morphological development and cytochrome c oxidase activity in Streptomyces lividans are dependent on the action of a copper bound Sco protein

    Get PDF
    Copper has an important role in the life cycle of many streptomycetes, stimulating the developmental switch between vegetative mycelium and aerial hyphae concomitant with the production of antibiotics. In streptomycetes, a gene encoding for a putative Sco-like protein has been identified and is part of an operon that contains two other genes predicted to handle cellular copper. We report on the Sco-like protein from Streptomyces lividans (Sco Sl ) and present a series of experiments that firmly establish a role for Sco Sl as a copper metallochaperone as opposed to a role as a thiol-disulphide reductase that has been assigned to other bacterial Sco proteins. Under low copper concentrations, a Δ sco mutant in S. lividans displays two phenotypes; the development switch between vegetative mycelium and aerial hyphae stalls and cytochrome c oxidase (CcO) activity is significantly decreased. At elevated copper levels, the development and CcO activity in the Δ sco mutant are restored to wild-type levels and are thus independent of Sco Sl . A CcO knockout reveals that morphological development is independent of CcO activity leading us to suggest that Sco Sl has at least two targets in S. lividans . We establish that one Sco Sl target is the dinuclear Cu A domain of CcO and it is the cupric form of Sco Sl that is functionally active. The mechanism of cupric ion capture by Sco Sl has been investigated, and an important role for a conserved His residue is identified. </jats:p

    Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights

    Get PDF
    Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass

    Capturing player enjoyment in computer games

    Get PDF
    The current state-of-the-art in intelligent game design using Artificial Intelligence (AI) techniques is mainly focused on generating human-like and intelligent characters. Even though complex opponent behaviors emerge through various machine learning techniques, there is generally no further analysis of whether these behaviors contribute to the satisfaction of the player. The implicit hypothesis motivating this research is that intelligent opponent behaviors enable the player to gain more satisfaction from the game. This hypothesis may well be true; however, since no notion of entertainment or enjoyment is explicitly defined, there is therefore no evidence that a specific opponent behavior generates enjoyable games.peer-reviewe

    Validation of driving behaviour as a step towards the investigation of Connected and Automated Vehicles by means of driving simulators

    Get PDF
    Connected and Automated Vehicles (CAVs) are likely to become an integral part of the traffic stream within the next few years. Their presence is expected to greatly modify mobility behaviours, travel demands and habits, traffic flow characteristics, traffic safety and related external impacts. Tools and methodologies are needed to evaluate the effects of CAVs on traffic streams, as well as the impact on traffic externalities. This is particularly relevant under mixed traffic conditions, where human-driven vehicles and CAVs will interact. Understanding technological aspects (e.g. communication protocols, control algorithms, etc.) is crucial for analysing the impact of CAVs, but the modification induced in human driving behaviours by the presence of CAVs is also of paramount importance. For this reason, the definition of appropriate CAV investigations methods and tools represents a key (and open) issue. One of the most promising approaches for assessing the impact of CAVs is operator in the loop simulators, since having a real driver involved in the simulation represents an advantageous approach. However, the behaviour of the driver in the simulator must be validated and this paper discusses the results of some experiments concerning car-following behaviour. These experiments have included both driving simulators and an instrumented vehicle, and have observed the behaviours of a large sample of drivers, in similar conditions, in different experimental environments. Similarities and differences in driver behaviour will be presented and discussed with respect to the observation of one important quantity of car-following, the maintained spacing

    Energy balance simulation of a wheat canopy using the RZ-SHAW (RZWQM-SHAW) model

    Full text link
    RZ-SHAW is a new hybrid model coupling the Root Zone Water Quality Model (RZWQM) and the Simultaneous Heat and Water (SHAW) model to extend RZWQM applications to conditions of frozen soil and crop residue cover. RZ-SHAW offers the comprehensive land management options of RZWQM with the additional capability to simulate diurnal changes in energy balance needed for simulating the near-surface microclimate and leaf temperature. The objective of this study was to evaluate RZ-SHAW for simulations of radiation balance and sensible and latent heat fluxes over plant canopies. Canopy energy balance data were collected at various growing stages of winter wheat in the North China Plain (36° 57'N, 116° 6'E, 28 m above sea level). RZ-SHAW and SHAW simulations using hourly meteorological data were compared with measured net radiation, latent heat flux, sensible heat flux, and soil heat flux. RZ-SHAW provided similar goodness-of-prediction statistics as the original SHAW model for all the energy balance components when using observed plant growth input data. The root mean square error (RMSE) for simulated net radiation, latent heat, sensible heat, and soil heat fluxes was 29.7, 30.7, 29.9, and 25.9 W m -2 for SHAW and 30.6, 32.9, 34.2, and 30.6 W m -2 for RZ-SHAW, respectively. Nash-Sutcliffe R 2 ranged from 0.67 for sensible heat flux to 0.98 for net radiation. Subsequently, an analysis was performed using the plant growth component of RZ-SHAW instead of inputting LAI and plant height. The model simulation results agreed with measured plant height, yield, and LAI very well. As a result, RMSE for the energy balance components were very similar to the original RZ-SHAW simulation, and latent, sensible, and soil heat fluxes were actually simulated slightly better. RMSE for simulated net radiation, latent heat, sensible heat, and soil heat fluxes was 31.5, 30.4, 30.2, and 27.6 W m -2, respectively. Overall, the results demonstrated a successful coupling of RZWQM and SHAW in terms of canopy energy balance simulation, which has important implications for prediction of crop growth, crop water stress, and irrigation scheduling

    A Time-Space Tradeoff for Triangulations of Points in the Plane

    Get PDF
    In this paper, we consider time-space trade-offs for reporting a triangulation of points in the plane. The goal is to minimize the amount of working space while keeping the total running time small. We present the first multi-pass algorithm on the problem that returns the edges of a triangulation with their adjacency information. This even improves the previously best known random-access algorithm

    Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation.

    Get PDF
    Immune abnormalities have been described in some individuals with autism spectrum disorders (ASDs) as well as their family members. However, few studies have directly investigated the role of prenatal cytokine and chemokine profiles on neurodevelopmental outcomes in humans. In the current study, we characterized mid-gestational serum profiles of 22 cytokines and chemokines in mothers of children with ASD (N=415), developmental delay (DD) without ASD (N=188), and general population (GP) controls (N=428) using a bead-based multiplex technology. The ASD group was further divided into those with intellectual disabilities (developmental/cognitive and adaptive composite score&lt;70) (ASD+ID, N=184) and those without (composite score⩾70) (ASD-noID, N=201). Levels of cytokines and chemokines were compared between groups using multivariate logistic regression analyses, adjusting for maternal age, ethnicity, birth country and weight, as well as infant gender, birth year and birth month. Mothers of children with ASD+ID had significantly elevated mid-gestational levels of numerous cytokines and chemokines, such as granulocyte macrophage colony-stimulating factor, interferon-γ, interleukin-1α (IL-1α) and IL-6, compared with mothers of children with either ASD-noID, those with DD, or GP controls. Conversely, mothers of children with either ASD-noID or with DD had significantly lower levels of the chemokines IL-8 and monocyte chemotactic protein-1 compared with mothers of GP controls. This observed immunologic distinction between mothers of children with ASD+ID from mothers of children with ASD-noID or DD suggests that the intellectual disability associated with ASD might be etiologically distinct from DD without ASD. These findings contribute to the ongoing efforts toward identification of early biological markers specific to subphenotypes of ASD
    corecore