
Automated modelling of viscoelastic flow using FEniCS

Luisa Molari
DISTART, University of Bologna, Italy
E-mail: luisa.molari@mail.ing.unibo.it

Garth N. Wells
Faculty of Civil Engineering and Geosciences, Delft University of Technology
E-mail:g.n.wells@tudelft.nl

Keywords: viscoelastic flow, finite element method, metaprogramming.

SOMMARIO Con un alto livello di astrazione, è possibile automatizzare in modo efficiente lo
sviluppo dei modelli ad elementi finiti, con vantaggi in termini di rapidità di sviluppo, di riduzione
degli errori di programmazione e con la possibilità di ottimizzare il codice. L’importanza di tutto
questo è illustrata, usando gli strumenti sviluppati nel progetto FEniCS [1], con lo studio di un fluido
viscoelastico in un contesto euleriano. In particolare si `e simulata la caduta di una sfera in un tubo
cilindrico con fluido viscoelastico.

ABSTRACT Using high-level abstractions, it is possible to efficiently automate the development
of finite element models. This has advantages in terms of rapid development, a dramatic reduction
in programming errors and offers the possibility of performing special optimisations to produced
highly efficient code. The power of this concept is illustrated using tools from the FEniCS project
[1] for the simulation of a viscoelastic fluid in an Eulerian framework, and the benchmark problem
of a sphere falling in a cylinder pipe is simulated.

1. INTRODUCTION
The FEniCS project [1] provides tools for the automation of computational mathematical mod-

elling. It aims to facilitate the translation of mathematical abstractions into optimised computer code.
The link between governing equations and computer implemention is shortened, maintaining an em-
phasis on the underlying mathematical representation and reduces exposure to code complexities,
which reduces development time and programming errors.

Several tools from the FEniCS project are utilised here for solving a viscoelastic flow problem.
FIAT [2] provides automatic generation of finite element bases and integration schemes, FFC [3],
the FEniCS Form Compiler, is a variational form compiler which interprets conventional or mixed
variational forms and produces optimised code for element matrices and vectors, and DOLFIN [4]
provides automatic assembly and solution of the ensuing equations. FFC in particular is an example
of the application of metaprogramming - programs which write programs - for the finite element
method. This approach provides scope for performance optimisations due to the automated transla-
tion of the mathematical model to machine code in several steps. The effectiveness of this approach
is illustrated through the simulation of a viscoelastic flowin an Eulerian framework.

2. GOVERNING EQUATIONS
Under the hypotheses of incompressible, isothermal flow theequations for momentum and mass

conservation are:

−∇p + ∇ ·T+ f = 0, (1)

∇ ·u = 0, (2)
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whereu is the velocity,p the pressure andT is the stress tensor. The stress tensor is given by:

T ≡ 2ηeD+ τ,

whereηe is the effective viscosity andD ≡
1
2(∇u+∇uT ) is the strain rate. The extra stress tensorτ

is specified through the constitutive relation:

λ τ̌ + τ −2ηD = 0, (3)

whereλ is the characteristic relaxation time andη is the viscosity. The stress rate can be specified
through the Upper-Convected Model (UCM):

τ̌ ≡
∂τ
∂ t

+ u ·∇τ − (∇u)T
· τ − τ ·∇u. (4)

The variables involved are: stress, pressure and velocity.The problem is non linear and time-
dependent. For weighting functionsS, v andq, the variational problem can be stated as: findτ,
u andp such that

(S,λ τ̌ + τ −2ηD) = 0 ∀ S, (5)

(v,−∇(p)+ ∇ ·T+ f) = 0 ∀ v, (6)

(q,∇ ·u) = 0 ∀ q. (7)

The Crank-Nicolson method and a Newton-Raphson approach are used to solve the problem.

3. APPLICATION
The variational problem provides input for the compiler FFC, which is shown in Table 1 for

the viscoelastic problem. The format of the input closely reassembles the mathematical notation.
From this input, FFC generates optimised code (in C++) for the finite element assembler DOLFIN,
which assembles and solves the required linear systems. Theviscoelastic problem represents an
application which benefits significantly from automation due to the coding complexities involved in
a mixed three-field formulation. Using FFC, the implementation of mixed formulations with any
number of fields and arbitrary bases is straightforward.

The benchmark of a sphere falling in a cylinder (Fig. 1) has been studied [5, 6]. For low Deborah
number (De = λV/η), the steady state is achieved without stabilisation terms. In Fig. 1, the pressure
and the velocity in both the directions, forDe = 0.1, are reported.
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P = FiniteElement("Lagrange", "triangle", 1, 1)

T = FiniteElement("Vector Lagrange", "triangle", 1, 3)
U = FiniteElement("Vector Lagrange", "triangle", 2, 2)

element = U + T + P

( v, vs, vp) = TestFunctions(element)
( u, s, p) = TrialFunctions(element)

(fu, fs, fp) = Functions(TH)
(uc, sc, pc) = Functions(TH)
(du, ds, dp) = Functions(TH)

lam = Constant() #characteristic relaxation time

eta = Constant() #viscosity
etaE = Constant()

dt = Constant()
theta = Constant()

# Strain rate
def D(q):

return 0.5*(grad(q) + transp(grad(q)))

sthatlin = - mult(transp(grad(uc)),ms) - mult(transp(grad(u)),msc) \

- mult(ms,grad(uc)) - mult(msc,grad(u))

#Upper convected model
sthat = s3 - mult(transp(grad(uc)),msc) - mult(msc,grad(uc))

# Bilinear forms
a1 = lam*dot(ms,mvs)*dx + theta*dt*lam*dot(s1,mvs)*dx + theta*dt*lam*dot(s2,mvs)*dx

+ theta*dt*lam*dot(sthatlin,mvs)*dx + theta*dt*dot(ms, mvs)*dx - theta*dt*2*eta*dot(D(u),mvs)*dx
a2 = - p*div(v)*dx + 2*etaE*dot(D(u),grad(v))*dx + dot(ms,grad(v))*dx

a3 = div(u)*vp*dx
a = a1 + a2 + a3

# Linear forms
L1 = theta*dt*lam*dot(sthat,mvs)*dx + theta*dt*dot(msc, mvs)*dx \

- theta*dt*2*eta*dot(D(uc),mvs)*dx +theta*dt*dot(mds,mvs)*dx
L2 = dot(fu, v)*dx + pc*div(v)*dx - 2*etaE*dot(D(uc),grad(v))*dx + dot(msc,grad(v))*dx

L3 = div(uc)*vp*dx
L = L2 - L1 - L3

Tabella 1: FFC input code for the unsteady viscoelastic model.



(a) GeometryRt/Rs = 2. (b) Pressure.

(c) Velocity in y direction. (d) Velocity in x direction.

Figura 1: Flow in a cylinder past a sphere.


