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Abstract. The numerical solution of strain gradient-dependent continuum problems has
been hindered by continuity demands on the basis functions. The presence of terms in
constitutive models which involve gradients of the strain field means that the C 0 conti-
nuity of standard finite element shape functions is insufficient. In this work, a continu-
ous/discontinuous Galerkin formulation is developed to solve a strain gradient-dependent
damage problem in a rigorous manner. Potential discontinuities in the strain field across
element boundaries are incorporated in the weak form of the governing equations. The per-
formance of the formulation is tested in one dimension for various interpolations, which
provides guidance for two-dimensional simulations.
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1 INTRODUCTION

An increasing range of important mechanical phenomena cannot be described by clas-
sical continuum theories, such as conventional elasticity and plasticity. Two important
such phenomena are size effects and strain localisation. Size effect is the phenomenon
by which ‘smaller is stronger’. Specimens appear to ‘gain’ mechanical strength as they
become smaller. Strain localisation involves the concentration of deformations in narrow
bands. When classical continuum models are applied for this problem by incorporating
strain softening, the governing equations become ill-posed. An approach to model both
size effects and strain localisation is the addition of strain gradient terms to the contin-
uum constitutive model. A broad range of models have been proposed, a small selection
of which can be found in References [1–6].

The inclusion of strain gradient terms in a constitutive model leads immediately to
the difficulty that the underlying governing equation is of a higher order than for classical
theories (typically fourth-order, instead of second-order). It is no longer sufficient to adopt
a C0 interpolation of the primal field (the displacement) to solve the boundary value
problem of interest using the finite element method. The complex nature of governing
equations also prevents the use of a mixed formulation in the traditional sense. Typically,
adoption of a mixed formulation cannot avoid the need for a C1 interpolation [2, 7].

A method is developed here for the solution of a strain gradient dependent damage
model by drawing on developments in discontinuous Galerkin methods for elliptic prob-
lems (see Arnold et al. [8] for an overview) and continuous/discontinuous Galerkin meth-
ods [9]. Unlike the linear problems addressed in Engel et al. [9], the nonlinear nature
and the complex structure of the governing equations for the damage model prevents the
straightforward application of integration by parts to derive a ‘conventional’ weak form.
A mixed-type formulation is adopted in which discontinuities across element boundaries
are accounted, allowing C0 interpolations to be used. The formulation is elucidated, and
then several different elements are tested numerically. Particular attention is paid to the
imposition of non-standard boundary conditions.

2 VARIATIONAL FORMULATION

2.1 Preliminaries

Consider a body Ω in R
n, with boundary Γ = ∂Ω. The outward normal vector to the

body is denoted n. The strong form of the equilibrium equation for the body Ω, in the
absence of body forces, and associated standard boundary conditions, are given by:

∇ · σ = 0 in Ω (1)

σ · n = h on Γh (2)

u = g on Γg (3)

where ∇ is the gradient operator, σ is the stress tensor, h is the prescribed traction on
Γh and g is the prescribed displacement on the boundary Γg (Γg ∪ Γh = Γ, Γg ∩ Γh = ∅).
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The stress σ at a material point x ∈ Ω is given by:

σ = (1 − ω) C : ∇su (4)

where the scalar ω ∈ [0, 1] is the ‘damage’, C is the usual linear, isotropic elasticity tensor,
and ∇s (·) represents the symmetric gradient of (·). The damage ω is a function of a scalar
history parameter κ, which in turn is related to a scalar ‘equivalent strain’ measure, ε̄. In
a classical formulation, ε̄ is simply an invariant of the strain tensor. For a strain gradient
dependent damage model, a gradient dependency (of the form proposed by Aifantis [1])
is introduced,

ε̄ = εeq + c2∆εeq (5)

where εeq is an invariant of the local strain tensor, and ∆ is the Laplacian operator. For
dimensional consistency, a length scale c is included. The chosen invariant εeq reflects
the mechanical processes which drive damage in a particular material. Importantly, the
form of equation (5) is common to a wide range of strain gradient-dependent continuum
models. In this sense, the examined model can be considered a prototype for a range of
different models.

The history parameter κ is equal to the largest (positive) value of ε̄ reached at a material
point during loading. It is akin to the equivalent plastic strain, and its evolution obeys
the well-known Kuhn-Tucker conditions,

κ̇ ≥ 0, f ≤ 0, κ̇f = 0. (6)

where f is a loading function, f = ε̄ − κ. Both the invariant of the strain tensor εeq, and
the dependency of the damage ω on κ reflect properties of the material being modelled.
The dependency of ω on κ is typically complex. Upon insertion of the constitutive model,
the fundamental problem is locally fourth-order (in regions where damage is developing).
This requires higher-order boundary conditions. The most commonly accepted boundary
condition is

∇εeq · n = 0 on Γ. (7)

2.2 Galerkin formulation

For a linear fourth-order equation, the standard procedure is to integrate the governing
equation by parts twice, leading to weak form which involves second-oder derivatives. The
difficulty with a strain gradient-dependent continuum model is that the nonlinear nature
of the governing equation and the complex dependency on the higher-order derivatives
prevents the straightforward application of integration by parts to derive a weak from
which involves second-order derivatives only. Hence, here both equations (1) and (5) are
addressed, leading to a coupled set of equations.

In a conventional setting, a mixed approach for this type of problem still demands that
one of the two interpolated fields be C0 continuous, and the other C1 (see, for example,
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de Borst and Mühlhaus [2]). A detailed discussion of this issue can be found in Wells et al.
[10]. To avoid the need for C1 continuity, which has led to serious numerical difficulties,
a formulation is presented here which requires only C0 continuity for the displacement
field, and C0 or C−1 for ε̄.

Before proceeding, it is necessary to consider a partition of the domain Ω into finite
elements Ωe such that

Ω̄ =

nel
⋃

e=1

Ω̄e. (8)

where Ω̄e is a closed set (i.e., it includes the boundary of the element). A domain Ω̃ is
also defined

Ω̃ =

nel
⋃

e=1

Ωe (9)

where Ω̃ does not include element boundaries. It is also useful to define the ‘interior’
boundary Γ̃,

Γ̃ =

nb
⋃

i=1

Γi (10)

where Γi is the ith interior element boundary and nb is the number of internal inter-
element boundaries. The function spaces Sh, Vh and Wh are introduced:

Sh =
{

uh
i ∈ H1

0 (Ω)
∣

∣ uh
i |Ωe

∈ Pk1
(Ωe) ∀e, ui = gi on Γg

}

(11)

Vh =
{

wh
i ∈ H1

0 (Ω)
∣

∣ wh
i |Ωe

∈ Pk1
(Ωe) ∀e, wi = 0 on Γg

}

(12)

Wh =
{

qh ∈ L2 (Ω)
∣

∣ qh|Ωe
∈ Pk2

(Ωe)∀e
}

(13)

where Pk represents the space of polynomial finite element shape functions (of polynomial
order k). The spaces Sh and Vh represent usual C0 continuous finite element shape
functions. The space Wh can contain discontinuous functions.

Inspired by work on discontinuous Galerkin formulations for second-order elliptic prob-
lems (a comprehensive review of which can be found in Arnold et al. [8]), the following
Galerkin problem is considered: find uh ∈ Sh and ε̄h ∈ Wh such that

∫

Ω

∇wh :
(

1 − ω
(

ε̄h
))

C : ∇suh dΩ −

∫

Γh

wh · h dΓ = 0 ∀wh ∈ Vh (14)

∫

Ω

qhε̄h dΩ −

∫

Ω

qhεh
eq dΩ +

∫

Ω̃

∇qh · c2∇εh
eq dΩ −

∫

Γ

qh∇εh
eq · n dΓ

−

∫

Γ̃

�
qh � · c2

〈

∇εh
eq

〉

dΓ −

∫

Γ̃

〈

∇qh
〉

· c2
�
εh
eq

� dΓ

+

∫

Γ̃

α1c
2

he

�
qh � ·

�
εh
eq

� dΓ = 0 ∀qh ∈ Wh (15)
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where α1 is a numerical parameter, he is a measure of element length, and, adopting the
notation from Arnold et al. [8], the jump operator is defined as:

�
a � = a1 · n1 + a2 · n2 (16)

and the average operator as:

〈a〉 =
a1 + a2

2
(17)

where the subscripts ‘1’ and ‘2’ denote sides of the surface across which the relevant
quantities are being computed. This formulation is valid for the case in which damage
does not reach Γ (as will be discussed in Section 2.3).

The above Galerkin formulation requires a C0 interpolation of the displacement uh,
and allows a discontinuous interpolation of ε̄h. However, by requiring that ε̄h be C0

continuous, a yet simpler formulation is possible, as the terms involving the jump in qh

vanish. The problem is then of the form: find uh ∈ Sh and ε̄h ∈ Wh such that

∫

Ω

∇wh :
(

1 − ω
(

ε̄h
))

C : ∇suh dΩ −

∫

Γh

wh · h dΓ = 0 ∀wh ∈ Vh (18)

∫

Ω

qhε̄h dΩ −

∫

Ω

qhεh
eq dΩ +

∫

Ω̃

∇qh · c2∇εh
eq dΩ −

∫

Γ

qh∇εh
eq · n dΓ

−

∫

Γ̃

〈

∇qh
〉

· c2
�
εh
eq

� dΓ = 0 ∀qh ∈ Wh (19)

This formulation will be termed the ‘continuous formulation’. It has several advantages
over the more general formulation. Firstly, fewer degrees of freedom are necessary at
element interfaces (this also reduces the practical complexity of the implementation).
Secondly, the penalty-like stabilisation term vanishes. The choice of the stabilisation
term is one of the issues which leads to ambiguity in the development of discontinuous
Galerkin methods for elliptic problems.

By applying integration by parts to the proposed weak forms, and after some manip-
ulations, consistency with the strong governing equations can be proven [10].

2.3 Application of non-standard boundary conditions

An issue which requires special attention is the prescription of higher-order boundary
conditions. The physical significance of these boundary conditions is an issue of vigorous
debate, but is not of key importance here. Rather, of crucial importance is how a given
boundary condition can be enforced. The application of higher-order boundary conditions
in the previous section was not addressed, and is now considered.

The governing equation is fourth-order only in regions where damage is developing –
elsewhere the problem is governed by a second-order PDE. Therefore, extra boundary
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conditions are required on the boundary of the damaging (fourth-order) regions. If these
boundaries are internal, to Ω, boundary conditions do not need to be explicitly supplied
as they are implied by continuity (or at least weak continuity) between the damaging
and undamaged (or unloading) regions. Special attention is however required when the
boundary of a damaging region coincides with the boundary of Ω. At this point, extra
boundary conditions must be supplied on the boundary Γκ, which is defined as:

Γκ = {x ∈ Γ | κ̇ > 0} (20)

From the form of the specific problem considered, boundary conditions for ∇εeq or ∆εeq

are required on Γκ. Choosing to apply a boundary condition for ∇εeq (h∇ε) on Γκ, the
Galerkin problem in equation (14) is modified to: find uh ∈ Sh such that

∫

Ω

∇wh :
(

1 − ω
(

ε̄h
))

C : ∇suh dΩ +

∫

Γκ

α2∇wh
eq · n Ec2∇εh

eq · n dΓ

=

∫

Γh

wh · h dΓ +

∫

Γκ

α2∇wh
eq · n Ec2h∇ε dΓ ∀wh ∈ Vh (21)

where α2 is a penalty parameter. Equation (15) remains unaltered. The incorporation of
boundary conditions on Γκ is a delicate issue and requires further careful study.

3 NUMERICAL PERFORMANCE

The proposed formulation is tested here for a series of simple tests. Nonlinear problems
are linearised exactly and solved using a full Newton-Raphson procedure. The logical
choice for εeq in one dimension is εeq = ε. Details of the finite element formulation
and linearisation can be found in Wells et al. [10]. The motivation behind the gradient-
dependent damage model studied herein is the provision regularisation to avoid the well-
known mesh dependency due to the classical (second-order) formulation being ill-posed
upon the introduction of strain softening. Therefore, examination of the damaging bar
focuses upon objectivity with respect to mesh refinement.

3.1 Elastic bar

The response of the proposed formulation is first examined for a quadratically tapering
elastic bar in one dimension (Figure 1). The term ε̄ is composed of two components: one
due to εeq and one due to εeq,xx. The convergence of the proposed formulation in terms of
ε,xx is studied in this section. Effectively, the numerical model is reconstructing ε,xx using
the solution from the elastic equilibrium equation. For Young’s modulus E = 1, the exact
solution of ε,xx for the bar is:

ε,xx =
450000 (27x2 − 2700x + 65000)

(9x2 − 900x + 25000)3 (22)
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Figure 1: Quadratically tapering bar. A1 = 1 and A2 = 0.1.

The convergence rate for different elements is examined now by defining the error as:

e = ‖ε̄ − εexact
,xx ‖Ω (23)

The convergence results are shown in Figure 2. For elements which utilise a discontinuous
interpolation for ε̄, α1 = 1. Numerically, all of the tested elements converge, although
the discontinuous ε̄ elements perform less predictably. This is partly related to a less
than optimal choice of α1. The absence of the parameter α1 is a distinct advantage of
the continuous formulation. A number of issues in terms of the convergence rate are
surprising and require further study.

3.2 Damaging bar

The formulation is now tested for a damaging bar. Damage does not reach the bound-
aries of the bar, hence no non-standard boundary conditions are supplied. The per-
formance of an element based on a continuous, piecewise linear interpolation of uh and
discontinuous, piecewise constant ε̄h was studied in Wells et al. [10], where the formulation
was shown to perform well against a benchmark solution. Here, the performance of some
higher-order interpolations for the continuous formulation are examined.

A linearly tapering bar, similar to that in Figure 1, with unit area at the ends and an
area of 0.8mm2 at the centre, is now examined for three different elements with continuous
uh and continuous ε̄h. The commonly adopted dependency:

ω =



















0 if κ ≤ κ0

1 −
κ0 (κc − κ)

κ (κc − κ0)
if κ0 < κ < κc

1 if κ ≥ κc

(24)

is applied, where κ0 is the value of the history parameter at which damage begins to
develop and κc is the value at which ω = 1. The evolution of ω in equation (24) yields a
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Figure 2: Convergence of different elements on the domain 10 < x < 90 for the problem ε̄ = ε,xx. In the
legend, the first number represents the polynomial order for ε̄h, and the second the polynomial order for
uh.

linear softening response for a uniaxial test in the absence of strain gradient effects. The
adopted material parameters are: Young’s modulus E = 20×103 MPa, κ0 = 0.0001,κC =
0.0125, and c = 1 mm.

The load–displacement responses for three different elements are shown in Figure 3.
Elements are differentiated from each other on the basis of the interpolation order for uh,
the interpolation order for ε̄h. For example, an element with C0 cubic shape functions for
uh and C0 quadratic shape functions for ε̄h is denoted P 3/P 2(C0). From the computed
load–displacement responses for various meshes, it is clear that the formulation is objective
with respect to spatial discretisation.

A study of discontinuous varieties of elements for this problem can be found in Mo-
lari et al. [11]. The discontinuous case is complicated by the presence of the numerical
parameter α1.

4 CONCLUSIONS

A Galerkin formulation has been presented for a strain gradient-dependent damage
model. The formulation allows for discontinuities in derivatives of the displacement field,
hence allowing the application of conventional C0 finite element shape functions. Unlike
previous formulations, it allows the rigorous use of C0 finite element shape functions for all
unknown fields. The effective performance of the formulation for continuous uh and ε̄h in
one dimension provides guidance for the extension to two dimensions which is currently
underway. The relative simplicity of the ‘continuous’ approach makes it attractive for
application in higher spatial dimensions.
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Figure 3: Load–displacement response for (a) P 2/P 1
(

C0
)

, (b) P 3/P 1
(

C0
)

and (c) P 3/P 2
(

C0
)

elements.

The dashed line represents the reference P 3/P 2
(

C0
)

response with 200 elements.
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While the results are promising for the prototype model examined, a number of im-
portant issues remain for the proposed formulation. While convergence has been shown
numerically, a more detailed theoretical analysis would enhance confidence and possibly
explain some unexpected results. A particularly sensitive issue remains the application
of non-standard boundary conditions, which still requires further close examination and
numerical testing.
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