1,388 research outputs found

    A study on the hadroproduction of heavy resonances in ATLAS experiment at the LHC

    Get PDF
    This work is devoted to the study of the hadroproduction of heavy resonances and related topics. The study begins with a chapter that analyzes some experimental issues on heavy quarkonia production, pointing out the important role that the ATLAS detector at LHC can play in this regard. The main goal of chapter 2 is revising some theoretical aspects on bottomonia production, some relevant heavy quarkonia production models are visited, pointing out the most relevant features involved in this work. Later, chapter 3 describes the most relevant techniques used in order to generate the Upsilon(nS) family, as well as a description on the changes and new implementations in the original software of PYTHIA: In summary, all the tools that we needed when carrying out the bottomonia hadroproduction analysis. In chapter 4 we focused on the study of the information available on Upsilon production, basing our analysis of bottomonia inclusive production on the results from Run IB of the CDF collaboration : We analyze the differential Upsilon(nS) cross sections, extracting some relevant NRQCD matrix elements, paying attention to the problem concerning the factorization of the cross section, etc. In chapter 5 we make some predictions on bottomonium hadroproduction at the forthcoming LHC energies and kinematic conditions: We show the expected differential and integrated cross section for all Upsilon(nS) resonances, etc. In chapter 6 we present a proposal to probe gluon densities in the proton using Upsilon hadroproduction, within the framework of the colour-octet mechanism. Aside the proposal, we included predicted production rates, and details that arose during the development of the idea. Finally, in order to help the reading of this work, a lot of technical details have been separated from the main body of the text, gathering them in the appendices A-B-C

    Prospects for probing the gluon density in protons using heavy quarkonium hadroproduction

    Get PDF
    We examine carefully bottomonia hadroproduction in proton colliders, especially focusing on the LHC, as a way of probing the gluon density in protons. To this end we develop some previous work, getting quantitative predictions and concluding that our proposal can be useful to perform consistency checks of the parameterization sets of different parton distribution functions.Comment: LaTeX, 14 pages, 6 EPS figure

    Use of genetic algorithms and gradient based optimization techniques for calcium phosphate precipitation

    Get PDF
    Phase equilibrium computations constitute an important problem for designing and optimizing crystallization processes. The Gibbs free energy is generally used as an objective function to find phase amount and composition at equilibrium. In such problems, the Gibbs free energy may be a quite complex function, with several local minima. This paper presents a contribution to handle this kind of problems by implementation of an optimization technique based on the successive use of a genetic algorithm (GA) and of a classical sequential quadratic programming (SQP) method: the GA is used to perform a preliminary search in the solution space for locating the neighborhood of the solution. Then, the SQP method is employed to refine the best solution provided by the GA. The basic operations involved in the design of the GA developed in this study (encoding with binary representation of real values, evaluation function, adaptive plan) are presented. Several test problems are first presented to demonstrate the validity of the approach. Then, calcium phosphate precipitation which is of major interest for P-recovery from wastewater, has been chosen as an illustration of the implemented algorithm

    New accurate measurement of 36ArH+ and 38ArH+ ro-vibrational transitions by high resolution IR absorption spectroscopy

    Get PDF
    The protonated Argon ion, 36^{36}ArH+^{+}, has been identified recently in the Crab Nebula (Barlow et al. 2013) from Herschel spectra. Given the atmospheric opacity at the frequency of its JJ=1-0 and JJ=2-1 rotational transitions (617.5 and 1234.6 GHz, respectively), and the current lack of appropriate space observatories after the recent end of the Herschel mission, future studies on this molecule will rely on mid-infrared observations. We report on accurate wavenumber measurements of 36^{36}ArH+^{+} and 38^{38}ArH+^{+} rotation-vibration transitions in the vv=1-0 band in the range 4.1-3.7 ÎŒ\mum (2450-2715 cm−1^{-1}). The wavenumbers of the RR(0) transitions of the vv=1-0 band are 2612.50135±\pm0.00033 and 2610.70177±\pm0.00042 cm−1^{-1} (±3σ\pm3\sigma) for 36^{36}ArH+^{+} and 38^{38}ArH+^{+}, respectively. The calculated opacity for a gas thermalized at a temperature of 100 K and a linewidth of 1 km.s−1^{-1} of the RR(0) line is 1.6×10−15×N1.6\times10^{-15}\times N(36^{36}ArH+^+). For column densities of 36^{36}ArH+^+ larger than 1×10131\times 10^{13} cm−2^{-2}, significant absorption by the RR(0) line can be expected against bright mid-IR sources

    No labeling quantum mechanics of indiscernible particles

    Get PDF
    Our aim in this paper is to show an example of the formalism we have developed to avoid the label-tensor-product-vector-space-formalism of quantum mechanics when dealing with indistinguishable quanta. States in this new vector space, that we call the Q-space, refer only to occupation numbers and permutation operators act as the identity operator on them, reflecting in the formalism the unobservability of permutations, a goal of quasi-set theory.Comment: submitted to the special issue of the International Journal of Theoretical Physics dedicated to the IQSA Meeting "Quantum Structures Brussels-Gdansk '08

    Effects of A Concentrate Rich in Agro-Industrial By-Products on Productivity Results, Carcass Characteristics and Meat Quality Traits of Finishing Heifers

    Get PDF
    Finishing diets in intensive beef production systems are mainly based on cereals, which does not take advantage of the capacity of the ruminant digestive system to digest fibrous feeds, cannot be considered sustainable and does not contribute to the circular bioeconomy. Our aim was to investigate the effects of an alternative concentrate rich in agro-industrial by-products for finishing crossbred Limousine heifers. Four pens with 12 heifers and four pens with 13 heifers were randomly allocated to one of two treatments: control (CON), a commercial concentrate with a 43.3% cereal composition, and alternative (ALT), a concentrate with a composition of 26% cereals and up to 73.5% agro-industrial by-products. Growth performance data were collected along the 91 days of the experimental period. Carcass characteristics were collected after slaughter and 24 h later. Vacuum-packaged samples from longissimus muscle were aged for 7, 21 or 28 days to study meat quality traits. Feed intake was higher and feed conversion rate was lower in the ALT treatment, but no differences were found in average daily gain and feeding costs. Treatment had no effects on any of the measured carcass traits (grading, hot and cold carcass weight, dressing out, chilling losses, subcutaneous fat depth, pH, temperature and lean and fat colour) nor on the meat quality traits (drip loss, cooking loss, shear force, oxidative stability, chromatic indices and pigment contents). Ageing time decreased drip loss and shear force, increased lightness and did not affect redness or surface colour stability. In conclusion, feeding crossbred Limousine heifers a finishing diet rich in agro-industrial by-products did not have any negative effects on performance, carcass and meat quality traits, which might be considered positive from the point of view of sustainability of beef production. Under the conditions assayed, ageing for 21 and 28 days improved tenderness of meat, without detrimental effects on oxidative stability or traits related to visual acceptability

    Contextual logic for quantum systems

    Get PDF
    In this work we build a quantum logic that allows us to refer to physical magnitudes pertaining to different contexts from a fixed one without the contradictions with quantum mechanics expressed in no-go theorems. This logic arises from considering a sheaf over a topological space associated to the Boolean sublattices of the ortholattice of closed subspaces of the Hilbert space of the physical system. Differently to standard quantum logics, the contextual logic maintains a distributive lattice structure and a good definition of implication as a residue of the conjunction.Comment: 16 pages, no figure

    Estimating the impact of influenza on the epidemiological dynamics of SARS-CoV-2

    Get PDF
    As in past pandemics, co-circulating pathogens may play a role in the epidemiology of coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In particular, experimental evidence indicates that influenza infection can up-regulate the expression of ACE2—the receptor of SARS-CoV-2 in human cells—and facilitate SARS-CoV-2 infection. Here we hypothesized that influenza impacted the epidemiology of SARS-CoV-2 during the early 2020 epidemic of COVID-19 in Europe. To test this hypothesis, we developed a population-based model of SARS-CoV-2 transmission and of COVID-19 mortality, which simultaneously incorporated the impact of non-pharmaceutical control measures and of influenza on the epidemiological dynamics of SARS-CoV-2. Using statistical inference methods based on iterated filtering, we confronted this model with mortality incidence data in four European countries (Belgium, Italy, Norway, and Spain) to systematically test a range of assumptions about the impact of influenza. We found consistent evidence for a 1.8–3.4-fold (uncertainty range across countries: 1.1 to 5.0) average population-level increase in SARS-CoV-2 transmission associated with influenza during the period of co-circulation. These estimates remained robust to a variety of alternative assumptions regarding the epidemiological traits of SARS-CoV-2 and the modeled impact of control measures. Although further confirmatory evidence is required, our results suggest that influenza could facilitate the spread and hamper effective control of SARS-CoV-2. More generally, they highlight the possible role of co-circulating pathogens in the epidemiology of COVID-19
    • 

    corecore