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ABSTRACT
As in past pandemics, co-circulating pathogens may play a role in the epidemiology
of coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). In particular, experimental evidence indicates
that influenza infection can up-regulate the expression of ACE2—the receptor of SARS-
CoV-2 in human cells—and facilitate SARS-CoV-2 infection. Here we hypothesized
that influenza impacted the epidemiology of SARS-CoV-2 during the early 2020
epidemic of COVID-19 in Europe. To test this hypothesis, we developed a population-
based model of SARS-CoV-2 transmission and of COVID-19 mortality, which simul-
taneously incorporated the impact of non-pharmaceutical control measures and of
influenza on the epidemiological dynamics of SARS-CoV-2. Using statistical inference
methods based on iterated filtering, we confronted this model with mortality incidence
data in four European countries (Belgium, Italy, Norway, and Spain) to systematically
test a range of assumptions about the impact of influenza.We found consistent evidence
for a 1.8–3.4-fold (uncertainty range across countries: 1.1 to 5.0) average population-
level increase in SARS-CoV-2 transmission associated with influenza during the
period of co-circulation. These estimates remained robust to a variety of alternative
assumptions regarding the epidemiological traits of SARS-CoV-2 and the modeled
impact of control measures. Although further confirmatory evidence is required, our
results suggest that influenza could facilitate the spread and hamper effective control
of SARS-CoV-2. More generally, they highlight the possible role of co-circulating
pathogens in the epidemiology of COVID-19.

Subjects Mathematical Biology, Virology, Epidemiology, Infectious Diseases, Public Health
Keywords SARS-CoV-2, COVID-19, Influenza, Virus–virus interaction, Mathematical modeling

INTRODUCTION
The current pandemic of coronavirus disease 2019 (COVID-19), caused by the novel severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to global alarm. Following
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the first case reports in December 2019 in Wuhan, China (Zhu et al., 2020), SARS-CoV-2
rapidly spread across the globe and has resulted in approximately 171 million cases and 3.6
million deaths worldwide, as of June 1, 2021 (Johns Hopkins University Center for Systems
Science and Engineering (JHU CCSE), 2020). Because of the initial lack of prophylactic or
therapeutic treatments, the pandemic caused the implementation of unprecedented control
measures, which culminated in the lockdown of several billion people in over 100 countries
during April–May 2020 (Hale et al., 2020). Although a number of fixed (e.g., greater
age, male sex) and chronic (e.g., hypertension, diabetes) risk factors of mortality have
now been identified (Williamson et al., 2020), the time-varying drivers of COVID-19
epidemiology remain poorly understood. Experience gained from past pandemics has
highlighted the potentially large contribution of co-circulating pathogens to the burden
of an emerging disease (Morens, Taubenberger & Fauci, 2008). Despite the relevance for
epidemic forecasting and for designing control strategies, the impact of co-circulating
pathogens on SARS-CoV-2 epidemiology has remained largely unexplored (Thindwa et
al., 2020).

Respiratory viruses—including SARS-CoV-2 and other coronaviruses, rhinoviruses,
influenza viruses, etc.—form a large class of viruses that cause seasonal infections of the
respiratory tract in humans. Mounting evidence indicates that their epidemiologies are not
independent, as a result of interaction mechanisms that may operate at different scales and
that can be classified as either facilitatory or antagonistic (DaPalma et al., 2010; Opatowski,
Baguelin & Eggo, 2018). The interaction between the respiratory syncytial virus (RSV) and
influenza may provide an example of antagonism. Indeed, experimental evidence in ferrets
has shown that influenza viruses induce an antiviral state that transiently limits secondary
infection with RSV (Chan et al., 2018), an effect postulated to explain the delayed epidemic
of RSV during the 2009 influenza pandemic (Casalegno et al., 2010; Mak et al., 2012).
Although such antagonistic interactions appear, to date, to be the most common among
respiratory viruses (Opatowski, Baguelin & Eggo, 2018), experimental evidence indicates
that co-infections may also have a facilitatory effect, for example by increasing viral
growth (Goto et al., 2016). Increased transmission of influenza during co-infection with
other respiratory viruses was also proposed to explain the multiple waves during the 1918
influenza pandemic (Merler et al., 2008). Interestingly, according to recent evidence a viral
respiratory infection (in particular with influenza viruses) can up-regulate the expression
of ACE2—the cognate receptor of SARS-CoV-2 in human cells—in the respiratory
epithelium (Smith et al., 2020; Ziegler et al., 2020). In addition, this up-regulation was
demonstrated experimentally to increase infectivity of SARS-CoV-2 in mice co-infected
with influenza A virus (Bai et al., 2021). This suggests that respiratory viruses could affect
the epidemiology of SARS-CoV-2. Here, we hypothesized that influenza—which peaked in
February 2020 and therefore co-circulated during the early spread of COVID-19 in Europe
(Fig. 1B)—interacted with SARS-CoV-2.

To test this hypothesis, we developed a semi-mechanistic, population-based model of
SARS-CoV-2 transmission and of COVID-19 mortality. Using likelihood-based statistical
inference methods, we fitted this model to mortality incidence data in four European
countries to test a range of assumptions about the impact of influenza on the transmission
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Figure 1 Potential drivers of SARS-CoV-2 transmission in Belgium, Italy, Norway, and Spain. (A)
Time plot of the stringency index, a country-level aggregate measure of the number and of the strictness
of non-pharmaceutical control measures implemented by governments. The vertical dashed line indi-
cates the start of the nationwide lockdown (Flaxman et al., 2020). (B) Time plot of influenza incidence,
calculated as the product of the incidence of influenza-like illnesses and of the fraction of samples posi-
tive to any influenza virus (see also Fig. S1 for a time plot of the latter two variables). The vertical dashed
lines delimitate the period of overlap between SARS-CoV-2 and influenza, defined as the period between
the assumed start date of SARS-CoV-2 community transmission and 6 weeks after the epidemic peak of
influenza (Paget et al., 2020). In each country, the time series displayed were incorporated as covariates,
which modulated the transmission rate of SARS-CoV-2 in our model (see Methods). In B, the y-axis val-
ues differ for each panel.

Full-size DOI: 10.7717/peerj.12566/fig-1

dynamics of SARS-CoV-2. We find that influenza may have transiently increased the
transmission of SARS-CoV-2 during the first wave of COVID-19 in Europe. Although
further confirmatory evidence is required, our results suggest that influenza could facilitate
the spread of SARS-CoV-2 and, more generally, emphasize the potential role of co-
circulating pathogens in the epidemiology of COVID-19.
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MATERIALS & METHODS
Data
Stringency index data
Country-level time series of the stringency index were available from the Oxford
COVID-19 Government Response Tracker, developed at the University of Oxford and
described elsewhere (Hale et al., 2020). Briefly, the stringency index provides an aggregate
measure of the number and of the strictness of non-pharmaceutical control measures
implemented by governments in response to the COVID-19 epidemic. The stringency
index is defined as the average of nine normalized ordinal variables, which quantify the
strength (e.g., recommended or required) and the scope (e.g., targeted or general) of closure
and containment measures (8 variables) and of health measures (1 variable). The resulting
index allows quantifying the strength of control measures in a systematic way, on a scale
ranging from 0 (no interventions) to 100 (maximum number and maximal intensity of
control measures). Of note, however, the stringency index does not quantify the impact of
controlmeasures, which likely varied across countries (Flaxman et al., 2020). In formulating
our model, we therefore modeled the relationship between the stringency index and the
relative reduction in SARS-CoV-2 transmission using a non-decreasing function, whose
parameters represented the impact of control measures and were estimated from the data.

Influenza incidence data
Virological data on the weekly numbers of samples tested and of samples positive to any
influenza virus were available from the FluNet database, compiled by the WHO (Fig. S1A).
Parallel syndromic data on the weekly incidence rate of influenza-like illnesses (ILI) were
available from the FluID database, also compiled by the WHO (Fig. S1B). These data were
deemed high-quality and used in a previous study on influenza forecasting in the countries
considered here (Kramer & Shaman, 2019). The weekly incidence rate of influenza was
then calculated as the product of ILI incidence and of the fraction of samples positive to
any influenza virus (Fig. 1B). Because the magnitude of influenza incidence thus calculated
varied markedly across countries (e.g., as a result of different surveillance systems and case
definitions), we rescaled each time series by its average during the period of co-circulation of
influenza and SARS-CoV-2 (Fig. 1B). The resulting time series was therefore dimensionless
and equalled 1 when influenza incidence equalled its average value during that period.

COVID-19 mortality data
Data on the daily number of deaths caused by SARS-CoV-2 (counted by date of death)
were available from national public health public institutes, in Belgium (Belgian institute
for health, sciensano)(2020), in Italy (Dipartimento della Protezione Civile, 2020), and in
Spain (Instituto de Salud Carlos III, official data with historical corrections compiled by
the media (DATADISTA, 2020). In Norway, the data were available from the worldwide
database compiled by the European Center for Disease Control and Prevention (European
Centre for Disease Prevention and Control, 2020). Following a previous study (Flaxman et
al., 2020), and to avoid a possible bias caused by the dominance of deaths due to non-locally
acquired infections early in the epidemic, we included observed deaths from the date after
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which the cumulative observed death count exceeded 10. Data points before that date
were treated as missing and were assigned a conditional log-likelihood of 0, such that they
did not contribute to the overall log-likelihood. The data were not further pre-processed,
except in Italy, where a negative death count was reported on 24 June 2020 and was treated
as missing and also assigned a log-likelihood of 0.

Transmission model
Model formulation
We formulated a variant of the standard Susceptible–Exposed–Infected–Recovered
transmission model (Keeling & Rohani, 2008), using the method of stages to allow for
realistic distributions of the latent, infectious, and onset-to-death periods (Lloyd, 2001;
Wearing, Rohani & Keeling, 2005). Specifically, we assumed that the latent and infectious
periods were Erlang-distributed with shape parameter 2 and mean 1/σ = 4 days and
1/γ = 5 days, respectively (Li et al., 2020). The resulting generation time Tg (i.e., the time
from infection of a primary case to transmission to a secondary case) had a mean of 6.5
days and a coefficient of variation of 0.58 (see Fig. S2 for the full distribution and the
details of the calculation), to Svensson (2007) and Camacho et al. (2011) consistent with
empirical observations and with the values fixed in a previous modeling study (Flaxman
et al., 2020; Bi et al., 2020). To model the impact of the gradual implementation of non-
pharmaceutical control measures (e.g., border closure, school closure, lockdown), we
mapped the stringency index (denoted by si(t )) to the time-varying relative reduction in
transmission of SARS-CoV-2 (denoted by rβ(t )). Specifically, we used the following simple
linear scaling function, with saturation:

rβ(t )=min(1,b×
si(t )
100

)

Here the parameter b quantifies how steeply the transmission rate of SARS-CoV-2
decreases as the stringency index increases. Hence, this parameter can be interpreted
as a measure of the impact of non-pharmaceutical control measures on SARS-CoV-2
transmission. The deterministic variant of the model was represented by the following set
of differential equations:

Ṡ = −λ(t )S
Ė1 = λ(t )S−2σE1
Ė2 = 2σ (E1−E2)
İ1 = 2σE2−2γ I1
İ2 = 2γ (I1− I2)
Ṙ = 2γ I2

The force of infection (that is, the per capita rate at which susceptible individuals contract
infection (Keeling & Rohani, 2008)), λ(t ), was modeled as:
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λ(t ) = β(t )
I1+ I2
N

β(t ) = β0(1− rβ(t ))βF (t )

rβ(t ) = min(1,b×
si(t )
100

)

βF (t ) = max(0,1+βFF(t ))

Re(t ) =
β(t )
γ
×

S(t )
N

where R0 represents the basic reproduction number of SARS-CoV-2, β0 = R0γ the
basic transmission rate, Re(t ) the time-varying effective reproduction number, N the
population size (assumed constant during the study period), and F(t ) the renormalized
time series of influenza incidence, incorporated as a covariate into the model (Fig. 1). With
this formulation, the parameter βF quantifies the impact of influenza on SARS-CoV-2
transmission: βF > 0 if influenza increases transmission, βF < 0 if influenza decreases
transmission, and βF = 0 if influenza has no impact on transmission (null hypothesis).
More specifically, the average incidence of influenza during the period of co-circulation
with SARS-CoV-2 corresponds to F(t )= 1, such that 1+βF represents the average relative
variation of SARS-CoV-2 transmission associated with influenza. In writing the equations,
we implicitly assume that the impact of influenza on SARS-CoV-2 transmission, if any, is
short-lived and does not extend long after influenza infection.

Finally, we incorporated an observationmodel that related the dynamics of SARS-CoV-2
infection to that of COVID-19 mortality, taking into account the fact that only a fraction of
infections results in death and that, among those, death occurs some time after symptom
onset (Flaxman et al., 2020; Verity et al., 2020; Khalili et al., 2020). We assumed an average
duration of pre-symptomatic of 2.5 days, resulting in an average incubation period of 6.5
days, in broad agreement with previous empirical studies (Khalili et al., 2020; Tindale et al.,
2020). Hence, individuals in the first infected state (I1) were considered pre-symptomatic,
and the onset of symptoms was assumed to coincide with the transition from I1 to I2. The
onset-to-death time was then assumed to be Erlang distributed with shape parameter 5 and
mean 1/κ = 17.8 days (coefficient of variation of 0.45), the value estimated in a previous
epidemiological study (Verity et al., 2020). In a sensitivity analysis, we also tested a mean
onset-to-death time of 1/κ = 13 days, the lower bound estimated in ameta-analysis (Khalili
et al., 2020). According to previous studies in European countries, the infection fatality
ratio (IFR) typically ranged from 0.5% to 1% early in the epidemic (Salje et al., 2020;
O’Driscoll et al., 2021; Pastor-Barriuso et al., 2020). We fixed the IFR to µ= 0.01 in the
base model, but we considered an alternative value of 0.005 in a sensitivity analysis. Given
those assumptions, the observation model was modeled by the following set of ordinary
differential equations:

Q̇1 = 2γµI1−5κQ1

Q̇i=2,...,5 = 5κ(Qi−1−Qi)
ḊM = 5κQ5

Here DM is the simulated number of daily deaths, modeled as an accumulator variable
and reset to 0 at the end of each day. The observed number of daily deaths, DO, was
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modeled using a negative binomial distribution with mean DM and over-dispersion kD
(i.e., V(DO|DM )=DM + kDD2

M ), a standard distribution used in previous modeling
studies (Flaxman et al., 2020; King et al., 2015).

As in Flaxman et al. (2020), simulations were started 30 days before the date from which
the cumulative observed death count first exceeded 10. At that date, we assumed that E1(0)
individuals had been exposed to SARS-CoV-2; other individuals were assumed susceptible
to infection (i.e., S(0)=N −E1(0)), and all other compartments were initialized to 0.

Stochastic variant and modeling of superspreading
The stochastic variant of the model was implemented as a continuous-timeMarkov process
approximated via a multinomial modification of the τ -leap algorithm (He, Ionides & King,
2010), with a fixed time step of 1t = 10−1 day. To model the effect of superspreading
events—a key feature of SARS-CoV-2 transmission dynamics (Althouse et al., 2020)—,
extra-demographic stochasticity was added to the transmission rate β(t ). Specifically, as
proposed by Kain et al. (2020), at every time step we drew a value of β0 from a Gamma
white noise distribution:

β0∼0WN(σ =

√
R0

(I1+ I2)k1t
,µ=R0γ )

with mean µand varianceµσ 2. Here k represents the dispersion parameter of the Negative-
binomial distribution for the individual reproduction number (with mean R0 and variance
R0+

R2
0
k ), as estimated in previous studies (Lloyd-Smith et al., 2005; Endo et al., 2020). As

in Kain et al. (2020) and in keeping with empirical estimates from contact tracing studies
of SARS-CoV-2 (Endo et al., 2020), we fixed k= 0.16.

Model estimation
Following the method presented in Flaxman et al. (2020), we estimated unknown model
parameters using observed COVID-19 mortality data alone. Indeed, because of the
initially limited testing capacity (typically reserved to severe cases or high-risk groups),
mortality data were arguably more reliable than case data early in the epidemic in most
countries (Flaxman et al., 2020). By incorporating known epidemiological parameters
(key among those the onset-to-death time, the IFR, and the generation time), however,
the method allows back-calculating infection rates from observed death rates. Hence,
in addition to the dynamic of mortality, we also reconstructed the dynamic of infection
and, as a validation, compared it to external epidemiological data—like cross-sectional
seroprevalence estimates—when available.

The following five parameters were estimated from the data:
1. The basic reproduction number, R0. According to a previous meta-analysis (Alimo-

hamadi, Taghdir & Sepandi, 2020), this parameter was searched in the interval 1–10.
2. The impact of non-pharmaceutical control measures, b. The lower bound of the search

interval of this parameter was fixed to 0.5, such that the maximal value of the stringency
index (s= 100) corresponded to a minimal reduction of SARS-CoV-2 transmission of
50% (Flaxman et al., 2020).
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3. The impact of influenza on SARS-CoV-2 transmission, βF (search interval: R).
4. The initial number of individuals exposed to SARS-CoV-2, E1(0) (search interval:

0–104).
5. The over-dispersion in death reporting, kD (search interval: R+).
A summary list of fixed and estimated model parameters is presented in Table 1.
All parameters were transformed to be estimated on the real line, using a log

transformation for positive parameters and the extended logistic function f (θ)= log θ−ab−θ
for parameters constrained in the interval [a,b]. The maximum iterated filtering algorithm
(MIF2, Ionides et al., 2015), implemented in the R (version 3.6.3) package pomp (King,
Nguyen & Ionides, 2016; R Core Team, 2020) (version 2.7), was used to estimate model
parameters. The R checkpoint package was used to freeze all the packages’ version at the
date of April 3, 2020 (De Vries, 2020). The estimation was completed in several steps,
starting with trajectory matching to identify good starting parameters for MIF2, followed
by 100 independent runs of MIF2 to locate the maximum likelihood estimate (MLE). Each
MIF run had 150 iterations with 5,000 particles, geometric cooling, and a random walk
standard deviation of 0.1 for the initial condition E1(0) and of 0.02 for the other parameters.
The log-likelihood of every parameter set was calculated as the log of the mean likelihood of
5 replicate particle filters, each with 20,000 particles. The profile likelihood was calculated
to verify the convergence of MIF2 and to derive an approximate 95% confidence interval
for the parameter βF (Raue et al., 2009)—the parameter of key interest in our study. For
the other parameters, a parametric bootstrap was used to calculate approximate 95%
confidence intervals, by re-estimating the parameters for each of 200 synthetic datasets
simulated at the MLE (Domenech de Celles et al., 2018; Domenech de Celles et al., 2019).
Compared with the profile likelihood, the parametric bootstrap requires less computation
and was found to perform well in previous applications (Domenech deCelles et al., 2018;
Domenech de Celles et al., 2019).

Sensitivity analyses
To verify the robustness of the parameter estimates, we conducted six sensitivity analyses
(further detailed in the Supplementary Results). First, we estimated an extended model in
which the reduction of SARS-CoV-2 transmission was allowed to scale non-linearly with
the stringency index. Second, to test the possible presence of other variables confounded
with influenza, we estimated amodel that included an exponential trend in the transmission
rate of SARS-CoV-2. Finally, we varied the fixed value of 3 parameters and re-estimated the
parameters of the base model. Specifically, we tested two alternative values of the average
generation time (E(Tg )= 5 days and E(Tg )= 7.5 days), one alternative value of the
infection fatality ratio (µ= 0.005), and one alternative value of the average onset-to-death
period ( 1

κ
= 13 days).

RESULTS
Parameter estimates
As shown in Fig. 1A, the number and the intensity of control measures against COVID-19
gradually increased from January until the nationwide lockdown in March, before a
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Table 1 List of model parameters.

Symbol Meaning Fixed value or
estimation range

Comment/Source

DE = 1/σ Average latent period 4 days Li et al. (2020)
DI = 1/σ Average infectious period 5 days Fixed to have average

generation time of 6.5 days.
Sensitivity analyses: 2,7days

Tg =DE+DI/2 Average generation time 6.5 days Flaxman et al. (2020) and Bi et al. (2020)
1/κ Average onset-to-death time 17.8 days Verity et al. (2020) and Flaxman et al. (2020)

Sensitivity analysis: 13 days
µ Infection-fatality ratio 0.01 Flaxman et al. (2020) and

O’Driscoll et al. (2021)
Sensitivity analysis: 0.005

N Population size Belgium: 11.50 M;
Italy: 60.32 M;
Norway: 5.37 M;
Spain: 47.01M

2019 demographic data from the
World Bank

si(t ) Stringency index fixed (covariate) Fig. 1A
F (t ) Incidence of influenza (rescaled) fixed (covariate) Fig. 1B
R0 Basic reproduction number 1–10 Alimohamadi, Taghdir & Sepandi (2020)
b Impact of non- pharmaceutical control measures 0.5–2 Flaxman et al. (2020)
βF Impact of influenza on transmission R
k Dispersion of individual reproduction number 0.16 Kain et al. (2020) and

Endo et al. (2020)
kD Over-dispersion in death reporting R+

E1(0) Initial number exposed to SARS-CoV-2 0–104 Initial condition

relaxation from May 2020. During this time period, the epidemic of influenza started in
January 2020 and ended in March 2020, with a peak during February in each country
(Fig. 1B and Fig. S1). Despite correlations between some parameters (in particular the
reproduction number and the impact of control measures, see Fig. S4), all parameters
were identifiable in each country (Table 2). Parameter estimates indicated that, during the
period of co-circulation, influenza was associated with an average 1.8–3.4-fold (uncertainty
range across countries: 1.1 to 5.0) population-level increase in SARS-CoV-2 transmission
(Table 2 and Fig. S3). After controlling for the impact of influenza, our estimates of the basic
reproduction number (R0) ranged from 1.2 (in Italy) to 3.4 (in Belgium). Although the
increased transmission associated with influenza early during the SARS-CoV-2 epidemic
explained the data significantly better (Table 2), a model without influenza led to higher R0

estimates (range 2.4–5.2, Fig. 2A), consistent with those of a previous study (Flaxman et al.,
2020). Also in line with Flaxman et al. (2020), we found consistent evidence for a marked
impact of non-pharmaceutical control measures (Table 2), which were associated with a
decrease in SARS-CoV-2 transmission below the reproduction threshold from mid-March
to June 2020 (Fig. 2A).
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Table 2 Model parameter estimates in Belgium, Italy, Norway, and Spain. For the proportion infected as of May 4, the numbers between paren-
theses represent a 95% prediction interval, based on 1,000 simulations at the maximum likelihood estimate. For the other parameters, they represent
an approximate 95% confidence interval, calculated using either the profile likelihood (Raue et al., 2009) (parameter βF ) or a parametric bootstrap
(other parameters).

Quantity Belgium Italy Norway Spain

Study period (year 2020) 13 Feb–28 Jun 29 Jan–28 Jun 25 Feb–28 Jun 06 Feb–28 Jun
Log-likelihood (SE) –384.4 (<0.1) –649.5 (0.1) –161.8 (<0.1) –558.5 (0.2)
Basic reproduction number (R0) 3.4

(2.5, 4.1)
1.2
(1.1, 1.4)

2.2
(1.0, 2.5)

1.4
(1.0, 1.9)

Impact of control measures (b) 1.03
(0.96, 1.07)

0.53
(0.50, 0.61)

1.05
(0.53, 1.08)

0.75
(0.56, 0.86)

Impact of influenza (βF ) 0.8
(0.5, 1.3)

1.8
(1.5, 2.0)

1.0
(0.1, 2.0)

2.4
(1.7, 4.0)

Initial number exposed to SARS-CoV-2 (E1(0)) 100
(20, 200)

530
(260, 1000)

130
(100, 2800)

400
(170, 780)

Over-dispersion in death reporting (kD) 7 × 10−4

(1,47)×10−4
0.07
(0.05, 0.09)

0.16
(0.01, 0.42)

0.08
(0.05, 0.10)

Proportion infected, as of 4 May 2020 (%) 8.8
(3.7, 17.1)

5.4
(3.9, 7.3)

0.4
(0.2, 0.8)

6.0
(3.8, 8.6)

Notes.
SE, standard error, calculated using 5 replicate particle filters, each with 20,000 particles, at the maximum likelihood estimate.

Model evaluation
Visual inspection of simulations suggested that our model correctly captured the dynamics
of COVID-19mortality in every country (Fig. 2B). Amore detailedmodel–data comparison
of summary statistics Wood (2010) confirmed that our model accurately reproduced the
peak time, the peak number and the total number of deaths, and the death growth
exponent (Maier & Brockmann, 2020), except in Italy and Spain where the latter statistic
was systematically under-estimated (Fig. S5). Our model-based estimates of the total
proportion of individuals infected with SARS-CoV-2 (as of 4 May 2020, Table 2) were
also comparable with those of a previous modeling study (Flaxman et al., 2020) and of
a seroprevalence study conducted in early May in Spain (approximate seroprevalence
estimate of 5% (Pollán et al., 2020)). Hence, our model appeared to precisely recapitulate
the epidemiology of SARS-CoV-2 morbidity and mortality over a period of ∼4 months.

Sensitivity analyses
The results of the sensitivity analyses are presented inTables S1–S3.We found little statistical
evidence that the model with non-linear scaling of the stringency index outperformed the
model with simple linear scaling in any country (1logL∈ [0.0,1.1], likelihood ratio test
P-value P ∈ [0.14,1.00], Table S1). Of note, although our estimates of the impact of
influenza varied little, the additional estimated parameter resulted in higher parametric
uncertainty, particularly in Norway where the approximate 95% CI embraced the null
value. Similarly, the model with an unexplained exponential trend in transmission did
not substantially improve model fit (1logL ∈ [0.0,3.2], likelihood ratio test P-value
P ∈ [0.01,1.00], Table S2). Despite higher parametric uncertainty caused by the estimation
of the trend, our results regarding the impact of influenza remained robust, but once again
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Figure 2 Dynamics of SARS-CoV-2 transmission and of COVID-19 mortality in Belgium, Italy, Nor-
way, and Spain. (A) time plot of the estimated effective reproductive number (Re). In each panel, the
black line represents the maximum likelihood estimate and the grey ribbon the 95% confidence interval
(calculated based on the likelihood profile of the influenza impact parameter, cf. Table 2) in each country.
The dotted black line represents the effective reproduction number estimated from a model without in-
fluenza (i.e., with the influenza impact parameter fixed to 0 and the other parameters estimated from the
data). The horizontal grey line is at Re= 1. (B) time plot of the simulated and observed numbers of daily
deaths caused by SARS-CoV-2. In each panel, the light grey lines represent 1,000 model simulations at the
maximum likelihood estimate, with one simulation highlighted in dark grey; the black line represents the
actual death counts. In A and B, the x-axis and the y-axis values differ for each panel.

Full-size DOI: 10.7717/peerj.12566/fig-2

the approximate confidence interval embraced the null value in Norway. In addition,
we found that the parameter estimates varied little when testing alternative hypotheses
about the fixed value of the average generation time, of the onset-to-death time, and of the
infection fatality ratio (Table S3). Finally, because ourR0 estimates were lower than previous
estimates in Italy and Spain, we tested an alternative model with R0 fixed to 2.5 in each
country. This model led to broadly similar conclusions, although the estimated impact of
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influenza was lower both in Italy (βF = 1.4, approximate 95% CI [1.2–1.5], logL=−692.3
[SE < 0.1]) and in Spain (βF = 0.7, approximate 95% CI [0.4–1.0], logL=−567.7 [SE =
0.1]). In sum, our main result about the impact of influenza remained robust to a variety
of alternative assumptions regarding the epidemiological traits of SARS-CoV-2 and the
modeled impact of control measures.

DISCUSSION
The main goal of this study was to test the hypothesis that influenza impacted the
epidemiological dynamics of SARS-CoV-2, building on previous experimental evidence of
a positive interaction between the two viruses (Smith et al., 2020; Ziegler et al., 2020; Bai et
al., 2021). To do so, we developed a semi-mechanistic, population-based model of SARS-
CoV-2 transmission and of COVID-19 mortality, which simultaneously incorporated the
impact of non-pharmaceutical control measures and of influenza. Using likelihood-based
statistical inference techniques, we confronted this model with mortality incidence data in
four European countries to systematically test a range of assumptions about the possible
impact of influenza and of control measures. In keeping with previous studies (Flaxman
et al., 2020), we found robust and consistent evidence that control measures markedly
reduced the transmission of SARS-CoV-2. In addition, we also found consistent evidence
suggesting that co-circulation of influenza transiently facilitated the transmission of
SARS-CoV-2 early in the epidemic in Europe.

Our study has a number of important limitations. First, as in other studies (Flaxman
et al., 2020; Li et al., 2020; Kucharski et al., 2020) and because of a lack of appropriate
age-specific data (for example on the temporal changes in the contact matrix and in the
incidence of influenza), our model was not age-structured, even though many aspects
of COVID-19 and of influenza epidemiology—like disease severity and lethality—vary
markedly with age (Verity et al., 2020). The susceptibility to SARS-CoV-2 infection was
also found to increase with age (Davies et al., 2020), a finding potentially explained by
lower baseline expression of the ACE2 receptor in children (Bunyavanich, Do & Vicencio,
2020). A testable prediction of our model, therefore, is that influenza should be associated
with a transient increase in susceptibility to SARS-CoV-2 infection, commensurate with
the variations of influenza incidence over age. Second, we modeled the impact of non-
pharmaceutical controlmeasures using a simple, linear function scaling the stringency index
to the reduction of SARS-CoV-2 transmission. Even though this simple hypothesis provided
a more parsimonious fit, that result may be specific to Europe, where control measures
gradually increased in number and in intensity (Fig. 1A). In general, the association is
likely non-linear (e.g., if a high-impact intervention like a lockdown is implemented early
on), and we therefore recommend testing a variety of scaling functions. More generally,
although our model builds on a previously validated method to estimate the time-varying
reproduction number (Flaxman et al., 2020), we acknowledge that the stringency index
may not fully capture temporal variations in SARS-CoV-2 transmission, in particular
behavioral changes outside of what was mandated by governments. Even though we tested
a model with an unexplained trend in transmission (Table S2), more complex temporal
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functions may be required to fully capture such changes. Third, we did not incorporate
climate into our model, even though, as for other respiratory viruses, environmental
variables like temperature and humidity may affect the transmission of SARS-CoV-2.
According to previous studies conducted in a variety of locations worldwide, however, the
impact of weather on the SARS-CoV-2 epidemic appears to have been modest, at least
during the first wave in early 2020 (Jüni et al., 2020; Gaudart et al., 2021; Sehra et al., 2020).
These findings are also consistent with epidemiological theory, which predicts that, because
of lack of population immunity, the initial pandemic trajectory may be relatively insensitive
to climate (Baker et al., 2020). Fourth, we did not specifically model fully asymptomatic
cases, which may represent a large fraction of SARS-CoV-2 infections (Li et al., 2020). The
omission of asymptomatic infections may lead to biased R0 estimates if their duration
significantly differs from that of symptomatic infections (Park et al., 2020). A previous
study, however, estimated that the duration of both types of infection is comparable (Li
et al., 2020), such that our estimates should be robust in more complex model structures.
Finally, we assessed only the impact of influenza, because of its high prevalence and
period of overlap with SARS-CoV-2 in early 2020 in Europe and of the availability of
high-quality data (Kramer & Shaman, 2019). Nevertheless, other respiratory viruses, like
RSV and rhinoviruses (Dee et al., 2021), may also interact with SARS-CoV-2 and could be
considered.

Acknowledging these limitations, our model makes at least two other predictions
that could be tested to provide confirmatory evidence. First, even though our results
did not allow to distinguish between higher transmissibility or higher susceptibility in
individuals co-infected with influenza and SARS-CoV-2, previous experimental work
suggests that the latter mechanism may operate, as a result of up-regulation of the ACE2
receptor caused by influenza infection (Smith et al., 2020; Ziegler et al., 2020). Hence,
we predict that a recent influenza infection should be an independent risk factor for
subsequent SARS-CoV-2 infection. Estimates of the frequency of co-detection of influenza
and SARS-CoV-2 by polymerase chain reaction (PCR) testing in nasopharyngeal swabs
were highly variable in previous studies (range 0–60% (Thindwa et al., 2020; Ozaras et al.,
2020)). Although the marked seasonality of influenza in temperate regions likely explains
in part the low frequency found in some studies (Ozaras et al., 2020), we propose that
differences in the natural history of influenza and SARS-CoV-2 infections also lead to a
systematic under-estimation of co-infection. Specifically, because the incubation period
of SARS-CoV-2 infection (estimated to average 5.7 days (Khalili et al., 2020)) exceeds that
of influenza (A, 1.4 days or B, 0.6 days (Lessler et al., 2009)), it is likely that, by the time
SARS-CoV-2 infection becomes detectable, influenza no longer is. To make that statement
more precise, we calculated the probability of detectability of a co-infection, with influenza
first then SARS-CoV-2 (Table S4). Assuming that influenza is detectable by PCR up to
4–5 days after (Carrat et al., 2008), and SARS-CoV-2 from 2–4 days before (Tindale et al.,
2020), symptom onset, we find that a large fraction (30–50%) of co-infections may not be
detectable at all. These results may help explain the low frequency of co-detection found
in some studies (Kim et al., 2020), and suggest that the time window of co-detectability
may be too short to adequately infer the association between influenza and SARS-CoV-2
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using PCR testing. Serological studies comparing the prevalence of antibodies against
influenza in SARS-CoV-2 cases and non-cases may therefore be required to test the
prediction that influenza is a risk factor for SARS-CoV-2 infection. Second, we predict
that, all else being equal, individuals vaccinated against influenza should be at lower risk
of SARS-CoV-2 infection than those unvaccinated. The findings of a negative association
between influenza vaccine coverage and COVID-19 mortality in ecological studies (in Italy
(Marín-Hernández, Schwartz & Nixon, 2020) and in other countries (Arokiaraj, 2020)) and
of a lower risk of SARS-CoV-2 infection in influenza vaccinees in some individual-level
epidemiological studies (reviewed in Riccio et al., 2020) are consistent with our prediction,
but further epidemiological investigations are needed. Importantly, our results can explain
these findings as the direct effect of influenza vaccines on influenza infection, instead of
indirect effects on non-influenza pathogens (e.g., as a result of trained immunity) (Salem
& El-Hennawy, 2020).

With the likely prospect of COVID-19 becoming endemic, the potential interactions
of SARS-CoV-2 with other respiratory pathogens—in particular respiratory viruses—may
become a key public health issue. In this context, our results suggest that influenza could
facilitate the circulation of SARS-CoV-2 and therefore increase the burden of COVID-19.
As outlined above, these results are consistent with several lines of experimental (Bai
et al., 2021; Smith et al., 2020; Ziegler et al., 2020) and epidemiological (Riccio et al.,
2020; Arokiaraj, 2020; Marín-Hernández, Schwartz & Nixon, 2020) evidence. We note,
however, that a previous study proposed that influenza and SARS-CoV-2 have competitive
interactions (Pinky & Dobrovolny, 2020). Specifically, using a within-host model of viral
replication Pinky and Dobrovolny found that the low growth rate of SARS-CoV-2 may
result in limited access to target cells and therefore suppression by other respiratory
viruses (Pinky & Dobrovolny, 2020). Although this mechanism may be generally relevant
for respiratory viruses, the ability of influenza to up-regulate ACE2 (Smith et al., 2020;
Ziegler et al., 2020)—a feature not included in the within-host model (Pinky & Dobrovolny,
2020)—could counteract this mechanism and explain the increased infectivity of SARS-
CoV-2 found experimentally (Bai et al., 2021). Of note, in keepingwith Pinky & Dobrovolny
(2020), another experimental study found evidence that the interferon response caused
competitive interactions between rhinoviruses and SARS-CoV-2 (Dee et al., 2021). Hence,
these different biological mechanisms suggest that every respiratory virus may interact
with SARS-CoV-2 in a highly specific way, with influenza being unique in its ability to
up-regulate ACE2 and to increase SARS-CoV-2 infectivity (Bai et al., 2021).

CONCLUSIONS
In conclusion, our results suggest that influenza virus infection could have increased the
transmission of SARS-CoV-2 and facilitated its spread during the early 2020 epidemic of
COVID-19 in Europe. Hence, an increase in the uptake of influenza vaccines may be called
for, not only to reduce hospitalizations due to influenza infections (Ozaras et al., 2020; Paget
et al., 2020), but also to reduce their downstream impact on SARS-CoV-2 transmission and
on COVID-19 mortality. More generally, taking into account the microbial environment
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of SARS-CoV-2 may be essential, not only to better understand its epidemiology, but also
to enhance current and future infection control strategies.
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