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Abstract

Phase equilibrium computations constitute an important problem for designing and optimizing crystallization processes. The Gibbs free
energy is generally used as an objective function to find phase amount and composition at equilibrium. In such problems, the Gibbs free
energy may be a quite complex function, with several local minima. This paper presents a contribution to handle this kind of problems by
implementation of an optimization technique based on the successive use of a genetic algorithm (GA) and of a classical sequential quadratic
programming (SQP) method: the GA is used to perform a preliminary search in the solution space for locating the neighborhood of the
solution. Then, the SQP method is employed to refine the best solution provided by the GA. The basic operations involved in the design of
the GA developed in this study (encoding with binary representation of real values, evaluation function, adaptive plan) are presented. Several
test problems are first presented to demonstrate the validity of the approach. Then, calcium phosphate precipitation which is of major interest
for P-recovery from wastewater, has been chosen as an illustration of the implemented algorithm.
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1. Introduction

Phase equilibrium calculations constitute an important
class of problems in chemical engineering applications and
considerable literature has been devoted to numerical op-
timization of vapor–liquid equilibrium [1,2]. Liquid–solid
equilibrium modeling is now receiving much attention due
to the advent of specialty chemicals, as well as to new con-
straints such as environmental considerations. An accurate
knowledge of such equilibria is particularly of great opportu-
nity for designing and optimizing crystallization processes.
This paper is devoted to calcium phosphate precipitation

which has been identified as a major issue. Let us recall
that phosphorus can be found under various chemical forms
in urban wastewater, which represents about 30–50% of the
total refusal of P: insoluble or dissolved organic phospho-
rus, orthophosphates (until 70% sometimes) and condensed
inorganic phosphates. In France, the average concentration
of phosphorus in domestic wastewater is within the range
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of 15–25mg/l, which may strongly vary from day to day,
even during the day. The P-discharge in aqueous natural en-
vironment leads to an excessive development of algae and,
generally to a pH increase, thus corresponding to eutrophi-
cation. Consequently, the phosphorus reduction in rivers is
considered as a key factor of the fight against pollution. The
principal legislative tool in Europe for fighting against eu-
trophication is the EC Urban Waste Water Treatment Di-
rective (271/91/EEC). This action came into force in 1991
and enabled waterbodies to be classified as sensitive areas
if they display symptoms of eutrophication.
Calcium phosphate precipitation involves various param-

eters: calcium and phosphate ion concentrations, supersat-
uration, ionic strength, temperature, ion types, pH and also
time. The process studied in this paper is based on calcium
phosphate precipitation obtained by mixing a phosphate so-
lution with calcium ions and a base. More precisely, it in-
volves a fluidized bed of sand continuously fed with aqueous
solutions (see Fig. 1). Calcium phosphate precipitates upon
the surface of sand grains. At the same time, small particles,
i.e., “fines”, leave the bed with the remaining phosphate not
recovered in the reactor. A layer of fines which has agglom-
erated is observed at the upper zone of the fluidized bed.
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Fig. 1. Schematic representation of the pellet reactor.

Both total and dissolved concentrations of phosphorus, pH
and temperature were measured at the outlet stream. The ex-
perimental results were previously presented in detail in [3].
In fact, the nature of the calcium phosphate precipitate

depends on the supersaturation of the various species. More
precisely, the co-crystallization of amorphous calcium phos-
phate (ACP, Ca3(PO4)2) and dicalcium phosphate dihydrate
(DCPD, CaHPO4) which may occur in the range of pH to
be considered has been taken into account in this study [2].
This paper first presents the development of a simple ther-

mochemical model, enough representative of calcium phos-
phate precipitation using a Debye–Huckel-based approach
for activity coefficient modeling. A preliminary study has
shown that the initialization problem of classical optimiza-
tion techniques which may be used (for instance, sequential
quadratic programming) is crucial for the robustness of the
code. For this purpose, an optimization strategy combining
a two-stage approach, i.e. a genetic algorithm for initializa-
tion and identification of the search zone followed by an
SQP method to refine the solution is proposed in this paper.
Several test problems have been used to demonstrate the va-
lidity of the approach. Then, the specific results obtained for
calcium phosphate precipitation are discussed.

2. Chemical equilibrium model for calcium phosphate

precipitation (system CaCl2–H3PO4–KOH)

To model the evolution of phosphate conversion rate as
a function of pH with respect to ACP and DCPD precipita-
tion, mass and electroneutrality conservation balances have
been taken into account, as well as the supersaturation rel-
ative to each species. During this precipitation, the aque-
ous species considered are, on the one hand, for phosphoric
acid, H3PO4, H2PO4

−, HPO4
2−, PO4

3−, and on the other
hand, the concentration of Ca2+ ion and the corresponding
calcium salts.

The ACP precipitation equation can be written as follows:

3Ca2+ + 2PO4
3−→ Ca3(PO4)2 (1)

The ACP surpersaturation is defined by the β parameter:

βACP =
1

5
ln

(

([Ca2+]λCa2+)3([PO4
3−]λPO4

3−)2

KsACP

)

(2)

where KsACP represents the ACP solubility product.
The DCPD precipitation equation can be expressed as:

Ca2+ + HPO4
2−→ CaHPO4 (3)

The DCPD supersaturation is defined by the following con-
straint:

βDCPD =
1

2
ln

(

([Ca2+]λCa2+)([HPO4
2−]λHPO4

2−)

KsDCPD

)

(4)

where KsDCPD represents the DCPD solubility product.
The different mass balances in the liquid phase include:

• a mass balance for calcium:

[Ca2+]+ [CaH2PO4
+]+ [CaHPO4]

+ [CaPO4
−]+ [CaOH+]

= (CaTotal − 3
2PtotalXACP − PTotalXDCPD) (5)

where XACP and XDCPD are the conversion ratios relative
to ACP and DCPD forms, respectively, defined as:

XACP +XDCPD =
PTotal − Psol

PTotal
(6)

• a mass balance for phosphate:

[H3PO4]+ [H2PO4
−]+ [HPO4

2−]+ [PO4
3−]

+ [CaH2PO4
+]+ [CaHPO4]+ [CaPO4

−]

= PTotal(1−XACP −XDCPD) (7)

The electroneutrality requirement gives:

[H2PO4
−]+ 2[HPO4

2−]+ 3[PO4
3−]+ [CaPO4

−]

+ [Cl−]+ [OH−] = [CaH2PO4
+]+ 2[Ca2+]

+ [CaOH+]+ [H+]+ [K+] (8)

The concentrations of ions and complexes are determined
from chemical equilibrium relations (equilibrium constants
are given for a temperature of 25 ◦C in molar units) (see
Table 1).
The Debye–Huckel model giving the activity coefficient

of each species is defined by:

log10 λ = −ADHz2i

√
II

1+ BDHα
√

I
+ CDHI (9)

where

ADH =
1

4π ln 10

(

e
√

εkBT

)3
√

ρoNA

2



Table 1
Equilibrium constants for the system Ca–PO4–H2O Ki = (Ai)(Bi)/(ABi)

[3]

Ki Ai Bi ABi Ki-value

K1 H+ H2PO4
− H3PO4 7.1285 × 10−3

K2 H+ HPO4
− H2PO4

− 6.2373 × 10−8

K3 H+ PO4
− HPO4

− 453.942 × 10−15

K4 Ca2+ H2PO4
− CaH2PO4

+ 3.908 × 10−2

K5 Ca2+ HPO4
− CaHPO4 1.8239 × 10−3

K6 Ca2+ PO4
− CaPO4

− 347.536 × 10−9

K7 Ca2+ OH− CaOH+ 5.8884 × 10−2

Kw H+ OH− H2O 1.004 × 10−14

BDH =

√

2e2NAρo

εkBT

and CDH is a constant equal to 0.055mol/l.
Note that the distance α is not the same for all ions in the

system (Table 2).
The function to be minimized is the Gibbs free energy

G of the system expressed as a linear combination of the
chemical potential of each component in each phase:

G =
N
∑

i=1

π
∑

k=1
nikµik (10)

µiL = µiL(T)+ RT ln([xi]λxi) (11)

µiS = µiS(T) (12)

µiL and µiS represent the chemical potentials of the species
i in the liquid and solid phases, respectively (see Table 3).
A substitution method has been applied, so that the only

unknowns of the system are now the following concentra-
tions [Ca2+], [PO4

3−], [H+] and the phosphate conversion
rate under DCPD and/or ACP forms (see Appendix A). The
system is solved for various concentrations in KOH in order
to analyze pH influence on conversion. Since calcium exists
in the form of calcium chloride, this concentration has been
taken equal to 2[Ca2+].
To solve the system, the two cases of calcium phosphate

precipitation have been dissociated, thus leading to an op-
timization problem with simultaneously four equations and
one inequality constraint. They are summarized in Table 4.

Table 2
Radius of hydrated ions α in Å [4]

Species Radius of the hydrated ions α (Å)

H2PO4
− 4.0

HPO4
2− 4.0

PO4
3− 4.0

CaH2PO4
+ 5.4

CaPO4
− 4.0

Ca2+ 6.0
OH− 3.5
H+ 9.0

Table 3
Chemical potential values at 25 ◦C

Species µi (kJ/mol)

H3PO4 −1142.65
H2PO4

− −1130.40
HPO4

2− −1089.26
PO4

3− −1018.80
CaH2PO4

+ −1691.96
CaHPO4 −1658.30
CaPO4

− −1609.20
Ca2+ −553.54
OH− −157.29
H+ 0.0
H2O −237.18
ACP −1680.47
DCPD −3844.92

Table 4
Different cases considered in the optimization method

Sub problem 1 Sub problem 2

ACP supersaturation ≤0 0
DCPD supersaturation 0 ≤0

In the former case, DCPD (and in the latter case ACP) is
the equilibrium component of the system.

The problem contains: – 13 bounded variables
– 11 equality constraints
– One inequality constraint
– One function to minimize

3. System solution

3.1. General principles

Several approaches have been proposed for the computa-
tion of the solutions to the phase and chemical equilibrium
problem (see [1] for a review of the different contributions).
A typical feature of such problems is that the generation
of starting points, that are used to perform the search with
conventional optimization methods (for example SQP), is a
basic point to guarantee the success of the optimization pro-
cedure.
A preliminary study on the above mentioned example has

shown that the use of a SPQ method only (SQP package
from IMSL library) [5] is very sensitive to the choice of the
initial guess and may often lead to a convergence failure.
Consequently, this work is motivated by the development
of a technique for the automatic generation of good starting
points. For this purpose, a hybrid optimization method is
proposed in this paper. A genetic algorithm (GA) is used to
perform a preliminary search in the solution space and to
locate the neighborhood of the solution. Then, using the best
solution found with the GA as initial guess, a gradient-based



optimization method is implemented to quickly converge
towards the optimum. The optimization tool (SQP) is thus
used to refine the GA solution.

3.2. Genetic algorithm

Genetic algorithms are procedures based on the mimetics
of mechanics of natural selection and genetics. Theoreti-
cally developed by Holland [6], genetic algorithms emulate
the biologist evolutionary theory to solve optimization
problems. They compute a set of individuals, a population,
i.e., evolving through a set of biologically inspired opera-
tors constituting the reproduction scheme. In this way, new
individuals are generated from parents. According to the
evolutionary theory, only the most suited elements of a pop-
ulation can survive and generate offspring, thus transmitting
their biological heredity to new generations. The heredity
is enclosed in the chromosomes of individuals represented
in an optimization problem by a specific numerical (often
binary) code. The suitability of each element according to
the optimization problem under consideration, is evaluated
via a fitness value directly derived from the objective func-
tion. The evolution mechanisms are constituted by three
specific reproduction procedures, i.e., selection, cross-over
and mutation. The cycle of evolution is generally repeated
until a predefined number of generations is reached.

3.2.1. Genetic algorithm procedure

The genetic algorithm procedure can be summarized
as follows:
• Generation of the initial population
• Estimation of the fitness of the initial population
While the total number of generations is not reached,
Generate the offspring population
• Selection of individuals surviving according to a
survival rate

• Synthesis of offspring obtained through cross-over
• Mutation of individuals in the entire population
through a mutation rate

• Duplication of the best individual found in the
next generation via elitism

End while.

3.2.2. Fitness evaluation

Like classical optimization methods, GAs also face dif-
ficulties in handling constraints. Most of GAs implementa-
tions on constrained optimization use the penalty method
proposed by Goldberg [7]; the fitness function F(x) is then
defined as follows:

F(x) = f(x)− R





me
∑

j=1
[gj(x)]2 +

m
∑

j=me+1
[max{0, gj(x)}]2





(13)

In this expression, f(x) represents the objective function and
the two penalty terms are relative to the equality and inequal-
ity constraint violations, where R is a penalty coefficient.
In the calcium phosphate precipitation problem, the fitness

function (F) involves the objective function (Gibbs free en-
ergy) and the penalty terms (p) denoting the equality (hl(x))
and inequality constraints (gk(x)) violations.

F = −G− RC (14)

C =
p
∑

k=1
[max{0, gk(x)}]2 +

m
∑

l=1
[hl(x)]2 (15)

3.2.3. Genetic coding—chromosome representation

Each problem solution, i.e., a vector consisting of contin-
uous variables is represented by a string, denoted as a chro-
mosome. The chromosome length depends on the number
of variables of the problem considered. The variables, which
are coded using a binary representation, are defined in the
following way:

• the continuous variables are represented by a determined
number of bits which defines the real number accuracy.

• the chromosomes contain for each variable the sign, man-
tissa, exponent of each real.

The binary code proposed in this paper is called the weight
box. It consists in encoding each digit of real in four bits
with respectively the following weights 1, 2, 3, 3 (sum of
weights is equal to 9) with a precision of 10−20. The choice
of the weight box may appear quite artificial, but it has been
achieved after a sensitivity analysis on numerous numerical
problems. For the sake of illustration, the real 0.185 is en-
coded 1000 0111 0110, the zero digit and the point being
not coded (see Fig. 2).
For example, the calcium phosphate precipitation problem

considered here contains five variables. All these variables
belong to the interval ]0, 1[ and the required precision is
10−20. Each variable is represented by 80 bits (20 × 4 bits
by integers) and so the chromosomes contain 400 genes
(Fig. 3).

3.2.4. Generation of the initial population

The initial population, synthesized through a random
number generator, presents some typical features. Since, the
problem contains both equality and inequality constraints.

1 0 0 0 0 1 1 1 0 1 1 0

=1*1+0*2+0*3+0*3=1

=0*1+1*2+1*3+1*3=8

=0*1+1*2+1*3+0*3=5

 +1*0.1

+8*0.01

  5*0.001

 = 0.185

Fig. 2. Coding example with the weight box.
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Fig. 3. Chromosome representation.

So, on the one hand, some variables are generated by a
random generator, whereas the others are deduced from
equality constraints by the use of a substitution procedure.
On the other hand, all individuals in the initial populations
must satisfy the inequality constraints with a given thresh-
old (10−6). If it is not the case, the concerned individual is
not accepted in the initial population.

3.2.5. Selection process

The selection process implies a fixed percentage (survival
rate) of individuals that survive in the new generation. The
selection is performed with the classical Goldberg biased
roulette wheel [6]. In this way, the probability (probi) that
the individual i survives is given by:

probi =
Fi

∑Npop

j=1 Fj

(14)

Npop represents the individuals number in the population.
The survival rate is one of the important features of a GA
implementation. If this rate is too low, the procedure may
evolve too slowly, requiring an important number of gen-
erations for scanning a significant part of the search space.
In turn, a too high survival rate may brew too violently the
populations, destroying irremediably good solutions. So, an
intermediate value of 0.6 was chosen as a default parameter.

3.2.6. Crossover

Once the surviving individuals are determined, the pop-
ulation is completed with new individuals obtained through
cross-over mechanisms performed on two parents randomly
paired in the whole current population. The crossover pro-
cedure adopted here is the classical one point permutation
operation [7].

3.2.7. Mutation

Like the crossover procedure, the mutation operation is
performed on the entire population with a fixed percentage
for the mutation rate. The mutation technique chosen here
consists in replacing a randomly selected gene by its binary
complement [7]. The mutation rate constitutes another key
point in a GA implementation, which creates genetic di-
versity in the current population. The mutation rate should
remain rather low in order not to disturb too much the al-
gorithm evolution. However, a too low rate value should be
inefficient to introduce new individuals in terms on genetic
codes in the population. A commonly used value of 0.1 was
chosen in this study.

3.2.8. Elitism strategies

In the GA implemented in this work, the best individual of
the current population in terms of the objective function, is
systematically duplicated in the following generation. This
very classic procedure is commonly called “elitism”. The
use of elitism presents the advantage to guarantee the sur-
vival of the genes of the strongest individual, by favoring
harmonious evolution (that is without excess of risky new
development in the solutions space). This advantage yet rep-
resents a weapon with double sharp edge, because one fa-
vors the local investigation to the detriment of the global
perspective, that can give premature convergence towards a
local optimum.

4. Method validation

The method has first been validated on mathematical ex-
amples with known solutions taken from the literature (see
Appendix B). Table 5 presents the numbers of the bounded
variables and the number of both equality or inequality con-
straints.
For example 1, the fitness evolution versus generation

number is shown in Fig. 4, where the optimum is represented
by a dotted line. The value of the GA parameters are given
in Table 6. Like any stochastic procedure to solve a given
problem, the GA has to be run 60 times in this study with
different initial populations.
From Tables 5 and 6, it can be observed that the survival

and mutation rates do not have a significant influence on the
method convergence which is confirmed by 60 runs of the
GA + SQP coupling.
As in the previous case for examples 2 and 3, the sur-

vival and mutation rates do not have a major influence on
the success of method. However, for a survival rate equal to
0.6 and a mutation rate equal to 0.4, the best success rate
value (near to 85%) is obtained. Moreover, for example 2,
the maximum generation number has no significant influ-
ence on the success rate, whereas for example 3 if the maxi-
mum generation number is decreased from 1000 to 500, the
success rate decreases by 15% (Tables 7 and 8).
Compared with a classical GA implementation, some spe-

cific features have been introduced in the procedure used in
this study. On the one hand, some variables are classically

Table 5
Constraints and variables numbers for each example

Example number

1 2 3

Optimization problem Drying
process

Alkylation
process

Chemical
complex
mixture

Number of variables 2 10 10
Number of equality constraints 0 6 3
Number of inequality constraints 3 0 0
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Fig. 4. Fitness evolution vs. generation number (example 1).

Table 6
Values of genetic algorithm parameters (example 1)

Example number

1 2 3

Total number of variables 2 10 10
Randomly generated 2 4 7
Deduced from the
constraints

0 6 3

Number of randomly
generated individuals
to create the initial
population

200 550 70000

Constraint value for the
initial population

1 × 10−8 1 × 10−30 1 × 10−3

Survival rate 0.6 0.6 0.6
Mutation rate 0.1 0.4 0.4
Maximum number of
generations

100 100 1000

Population size 100 100 100

Table 7
Success rate for different survival rates and for a mutation rate fixed at
0.1 (example 1)

Survival rate Success rate (%)

0.5 86.44
0.6 92.19
0.7 85.41
0.8 86.44

Table 8
Success rate observed for different mutation rates and for a survival rate
fixed at 0.6 (example 1)

Mutation rate Success rate (%)

0.05 94.20
0.10 92.19
0.20 89.74
0.30 90.91
0.40 87.87

Table 9
Success rates and CPU times for the three examples

Example number Success rate (%) CPU time (s)

1 92.19 2
2 83.33 3
3 85.00 40

generated through a random function, whereas others are
deduced from the constraints. Each constraint value is de-
termined so that the individual initial population number is
not too high in particular for the problem 3. All initial pop-
ulation variables respect the interval limits. The method of
the initial population generation allows to reduce the num-
ber of individuals generated by the random function (a de-
crease of 40% concerning the CPU time is observed). On
the other hand, the initial populations satisfy the constraints
at a given threshold. This procedure allows to reach a short
CPU time (see Table 9 for example).
The best individual obtained from the GA will now serve

as an initial point for the SQP method. It is important to
note that the best individual constitutes the so-called scale
factor required by the SQP method.

5. Application to calcium phosphate

precipitation—results and discussion

For the calcium phosphate precipitation problem, the
number of variables has been reduced by a substitution
method from 13 to 5 which thus presents some advantages
and drawbacks. Of course, it can be said that the calcium
phosphate precipitation problem requires two different
ways of handling the model equations, i.e., GA reduced
set and SQP full set. For the genetic algorithm, it can be
considered as an asset since the number of initial variables
to be generated by the random function is reduced and the



Table 10
Success rate vs. genetic algorithm parameters (calcium phosphate precip-
itation example)

Maximum number
of generations

Survival rate Mutation rate Success rate

1000 0.4 0.4 56/60 as 93.33%
1000 0.5 0.4 52/60 as 86.66%
1000 0.6 0.4 57/60 as 95.00%
1000 0.7 0.4 54/60 as 90.00%
1000 0.8 0.4 53/60 as 88.33%
1000 0.6 0.3 52/60 as 86.66%
1000 0.6 0.2 56/60 as 93.33%
1000 0.6 0.1 50/60 as 83.33%
500 0.6 0.4 50/60 as 83.33%

different individual chromosomes are smaller than 400 bits
(instead of 1040 bits when each variable is represented by
80 bits) which consequently decreases also the CPU time.
Whereas for the SQP method, this reduction leads to an
ill-conditioned problem, so the problem is solved with the
original 13 variables. The best success rate has reached up
to 95% for 60 runs.
The survival rate has not a major influence on the conver-

gence, but the maximal success rate is obtained for a sur-
vival rate value equal to 0.6. In Table 10, it can also be seen
that the mutation rate has a significant impact. In a general
way, if this rate decreases, the success rate decreases too,
due to a poor scanning of the search space. For the same
scanning reason, the maximum generation number plays an
important role on the convergence.
Some additional GA runs have been carried out with the

following “worst” values for the genetic algorithm parame-
ters: maximum generation number equal to 500, 0.6 for the
survival rate, and 0.1 for the mutation rate. As expected,
these values lead to the lowest success rate for the method
(success rate is equal to 0 for 20 runs). This means that the
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Table 11
Gibbs free energy and penalty term evolution during the two-step solution
procedure (calcium phosphate precipitation example)

Gibbs free
energy (J/mol)

Penalty term

Initialization of the GA procedure −6236.95 5 × 10−6

Best solution obtained by the GA
and used as an initialization
for the SQP procedure

−4573.10 1.2 × 10−7

Best solution found by SQP −5425.07 10−32

search space scanning must be as large as possible to guar-
antee a good level of the success rate.
The numerical values obtained for the Gibbs free energy

and the sum of constraints are presented in Table 11 (R =
10−6), where on the one hand, the results obtained after the
GA phase and, on the other hand, those obtained at the end
of the GA + SQP phase, are given. At step 2 of procedure,
the SQP method is initialized with the best solution (i.e. best
individual) found by the GA. It must be noted, that the best
solution obtained from SQP exhibit a higher value for the
Gibbs free energy higher than the initialization value used
with GA, but the penalty term is smaller.
Experimental points have been used to validate the ap-

proach (see Fig. 5). They correspond to an initial phospho-
rus concentration of 50mg/l, a Ca/P molar ratio equal to 3
and a temperature equal to 20 ◦C. It can be seen that a good
agreement is observed between experimental and predicted
values (see Fig. 5) [3].

6. Conclusions

In this paper, a hybrid optimization procedure com-
bining a Genetic Algorithm and a SQP method has
been developed and tested on a solid–liquid equilibrium



optimization problem. Let us recall that genetic algorithms
[6] differ from most classical optimization methods since
no assumption about the problem mathematical properties
is required. GAs use a guided random search in which
many different solutions to a problem are investigated and
refined simultaneously to identify near-optimum solutions.
A major interest of such methods is that they lead to rea-
sonable solutions, even starting from poor initial guesses.
A GA implementation requires the definition of some
parameters, i.e., population generation mode, population
size, (i.e., the number of individuals forming a population
which must be sufficiently large to create genetic diversity,
in order to cover as well as possible the solution space)
crossover probability, mutation rate, survival, crossover and
mutation mechanisms. The two-level strategy leads to an
efficient search: the GA provides good starting points for
the subsequent SQP method, thus favoring the local search.
Calcium phosphate precipitation which is of major in-

terest for P-recovery from wastewater has been chosen as
an illustration of the procedure. The two-stage optimization
strategy presented in this study may have widespread appli-
cations for solid–liquid equilibrium calculations.

Appendix A. Gibbs energy minimization substitution

x(1) = [Ca2+], x(2) = [PO3−
4 ], x(3) = [H+], x(4) =

XACP, x(5) = XDCPD

[K+] = 2.92 × 10−3mol/l, PTotal = 1.6 × 10−3mol/l,
CaTotal = 4.8× 10−3mol/l, [Cl−] = 9.6× 10−3mol/l

minG=

(

x(3)3x(2)λ3HλPO4

K3K2K1

)(

−1142.65× 103 + 298.15R ln

(

x(3)3x(2)λ3HλPO4

K3K2K1

))

+

(

x(3)2x(2)λPO4λ
2
H

K3K2λH2PO4

)(

−1130.40× 103 + 298.15R ln

(

x(3)2x(2)λPO4λ
2
H

K3K2

))

+
(

x(3)x(2)λHλPO4

K3λHPO4

)(

−1189.26× 103 + 298.15R ln

(

x(3)x(2)λHλPO4

K3

))

+ x(2)(−1018.80× 103 + 298.15Rln(x(2)λPO4))+

(

x(1)x(3)2λ2HλPO4λCa

K4λCaH2PO4K3K2

)

×

(

−1691.96× 103 + 298.15R ln

(

x(1)x(3)2λ2HλPO4λCa

K4K3K2

))

+
(

x(1)x(3)x(2)λHλPO4λCa

K3K5

)(

−1658.30× 103 + 298.15R ln

(

x(1)x(3)x(2)λHλPO4λCa

K3K5

))

+
(

x(1)x(2)λCaλPO4

K6λCaPO4

)(

−1609.20× 103 + 298.15R ln

(

x(1)x(2)λCaλPO4

K6λCaPO4

))

+ x(1)(−553.54× 103 + 298.15R ln(x(1)λCa))+
Kw

λOHx(3)λH

(

−157.29× 103 + 298.15R ln

(

Kw

x(3)λH

))

+ x(3)(298.15R ln(x(3)λH))− 1680.47x(4)PTotal − 3844.92x(5)PTotal

where

I = 0.5

(

4x(1)+
x(1)x(3)2λ2HλPO4λCa

K4λCaH2PO4K3K2
+

x(1)KwλCa

λCaOHx(3)λHK7

+ x(3)+ [K+]+
x(3)2x(2)λPO4λ

2
H

K3K2λH2PO4

+ 4
x(3)x(2)λHλPO4

K3λHPO4

+ 9x(2)+
x(1)x(2)λCaλPO4

K6λCaPO4

+
Kw

λOHx(3)λH
+ [Cl−]

)

ACP surpersaturation constraints:

ln

(

(x(1)λCa)3(x(2)λPO4)
2

KsACP

)

≥ 0

DCPD surpersaturation constraints:

ln

(

(x(1)λCa)(x(3)x(2)λHλPO4/K3λHPO4)

KsDCPD

)

≥ 0



Electroneutrality constraints:

2x(1)+
x(1)x(3)2λ2HλPO4λCa

K4λCaH2PO4K3K2
+

x(1)KwλCa

λCaOHx(3)λHK7
+ x(3)

+ [K+]−

(

x(3)2x(2)λPO4λ
2
H

K3K2λH2PO4

+ 2
x(3)x(2)λHλPO4

K3λHPO4

+ 3x(2)+
x(1)x(2)λCaλPO4

K6λCaPO4

+
Kw

λOHx(3)λH
+ [Cl−]

)

= 0

Calcium balance constraints:

x(1)+
x(1)x(3)2λ2HλPO4λCa

K4λCaH2PO4K3K2
+

x(1)KwλCa

λCaOHx(3)λHK7

+
x(1)x(2)λCaλPO4

K6λCaPO4

+
x(1)x(3)x(2)λHλPO4λCa

K3K5

−
(

CaTotal −
(

3

2
x(4)+ x(5)

)

PTotal

)

= 0

Phosphate balance constraints:

x(2)+
x(3)3x(2)λ3HλPO4

K3K2K1
+

x(1)x(3)2λ2HλPO4λCa

K4λCaH2PO4K3K2

+
x(3)2x(2)λPO4λ

2
H

K3K2λH2PO4

+
x(3)x(2)λHλPO4

K3λHPO4

+
x(1)x(2)λCaλPO4

K6λCaPO4

+
x(1)x(3)x(2)λHλPO4λCa

K3K5

− (PTotal(1− x(4)− x(5))) = 0

Appendix B. Mathematical examples

B.1. Example 1: optimization of drying process for a

through-circulation dryer

The problem proposed by Chung [8] consists in finding
the air flow rate x1 and the bed thickness x2 which maximize
the drying production rate:

P = 0.033x1

[

0.036

1− exp(−107.9x2/x0.411 )
+ 0.095

−
9.27×10−4x10.41

x2
ln

(

1− exp (−5.39x2/x0.411 )

1−exp(−107.9x2/x0.411 )

)]−1

(B.15)

subject to the constraints

0.2− 4.62× 10−10x2.851 − 1.055× 10−4x1 ≥ 0 (B.16)

4

12
− 8.20× 10−7x1.851 x2 −

2.25

12
≥ 0 (B.17)

2− 109.6
x2

x0.411

[

0.036

1− exp(−107.9x2/x0.411 )
+ 0.095

−
9.27× 10−4x0.411

x2
ln

(

1− exp(−5.39x2/x0.411 )

1− exp(−107.9x2/x0.411 )

)]

≥ 0

(B.18)

The optimum given in the literature is (x1, x2; f) = (975.831,
0.5244; 172.487).

B.2. Example 2: alkylation process optimization

Alkylation is a commonly used process in upgrading gaso-
line. The problem under consideration consists in determin-
ing the best operating conditions for the alkylation process
described by Paynes [9] and optimized by Sauer et al. [10]
who transformed the nonlinear problems into a series of lin-
ear programming problems. Since Bracken and McCormick
[11] formulated this problem as a classical nonlinear pro-
gramming model, but failed to obtain a correct solution, the
same notations as in [11] are used, but the problem is solved
by using the proposed GA/SQP procedure.
By using the data from [10], the problem can be formu-

lated as follows:
Maximize:

P = 0.063x4x7 − 5.04x1 − 0.035x2 − 10x3 − 3.36x5

(B.19)

subject to the inequality constraints:

x1 = olefin feed (barrels/day) 0.010 ≤ x1 ≤ 2000
x2 = isobutane recycle (thousands
of pounds/day)

0.010 ≤ x2 ≤ 16000

x3 = acid addition rate (thousand
of pounds/day)

0.010 ≤ x3 ≤ 120

x4 = alkylate yield (barrels/day) 0.010 ≤ x4 ≤ 5000
x5 = isobutane makeup
(barrels/day)

0.010 ≤ x5 ≤ 2000

x6 = acid strength (weight percent) 85 ≤ x6 ≤ 93
x7 = motor octane number 90 ≤ x7 ≤ 95
x8 = external isobutane-to-olefin
ratio

3 ≤ x8 ≤ 12

x9 = acid dilution factor 1.2 ≤ x9 ≤ 4
x10 = F-4 performance number 145 ≤ x10 ≤ 162

and the equality constraints:

x4 = x1(1.12+ 0.13167x8 − 0.00667x28) (B.20)

x5 = 1.22x4 − x1 (B.21)

x2 = x1x8 − x5 (B.22)

x6 = 89+
x7 − (86.35+ 1.098x8 − 0.038x8)

0.325
(B.23)

x10 = 133+ 3x7 (B.24)



x9 =
0.001x4x6x9
98− x6

(B.25)

The optimum given in the literature is (x1, x2, x3, x4, x5,
x6, x7, x8, x9, x10; f) = (1728.371, 16000.000, 98.136,
3056.042, 2000.00, 90.618, 94.189, 10.414, 2.616, 149.569;
1113.231).

B.3. Example 3: chemical equilibrium in complex mixture

The chemical equilibrium problem formulated and solved
in [12,13] by means of piecewise linear approximation fol-
lowed by linear programming is now considered.It is known
that the free energy reaches a minimum for a system at the
chemical equilibrium. So, to determine the relative amounts
of species in an equilibrium situation, the problem of free
energy minimization can be solved. By considering the N,
H, O system [12] involving 10 species, the problem consists
in minimizing:

f(x) =
10
∑

i=1
xi

(

wi + lnP + ln
xi

∑10
i=1xi

)

(B.26)

with P = 750 andwi (i = 1, . . . , 10) = −10.021,−21.096,
−37.986, −9.846, −28.653, −18.918, −28.032, −14.640,
−30.594, −26.111.
The constraints are:

x1 + 2x2 + 2x3 + x6 + x10 = 2 (B.27)

x4 + 2x5 + x6 + x7 = 1 (B.28)

x3 + x7 + x8 + 2x9 + x10 = 1 (B.29)

The optimum given in the literature is (x1, x2, x3, x4, x5, x6,
x7, x8, x9, x10; f) = (7.006 × 10−3, 6.808 × 10−2, 0.9072,
3.609×10−4, 0.4908, 4.723×10−4, 1.757×10−2, 2.904×
10−3, 1.518× 10−2, 4.195× 10−2; 43.494).

Appendix C. Nomenclature

e electronic charge (= 1.602177× 10−19 C)
kB Boltzmann constant (= 1.380658× 10−23 J/K)

NA Avogadro number (= 6.022136× 1023mol−1)
T temperature (K)
zi charge number of ion
ε solvent dielectric constant (ε=εr × εo)
εo vacuum permitivity (= 8.854187× 10−12 F/m)
εr relative solvent dielectric constant
λ ion activity coefficient
ρo solvent density (kg/m3)
I solution ionic strength (mol/l)
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